scholarly journals Dietary potential renal acid load and net acid excretion in rural and urban pre-menopausal Gambian women

2017 ◽  
Vol 76 (OCE4) ◽  
Author(s):  
G.R. Goldberg ◽  
S.E. Dalzell ◽  
L.M.A. Jarjou ◽  
K. Ward ◽  
A. Prentice
Author(s):  
Stanley Yeung ◽  
Antonio Gomes-Neto ◽  
Maryse Osté ◽  
Else van den Berg ◽  
Jenny Kootstra-Ros ◽  
...  

Background and objectives: High dietary acid load may accelerate kidney function decline. We prospectively investigated whether dietary acid load is associated with graft outcomes in kidney transplant recipients and whether venous bicarbonate (HCO3−) mediates this association. Design, setting, participants and measurements: We used data from 642 kidney transplant recipients with a functioning graft ≥1 year after transplantation. Net endogenous acid production (NEAP) was estimated using food frequency questionnaires (FFQ) and, alternatively, 24-hour urinary urea and potassium excretion to estimate NEAPUrine. We defined composite kidney endpoint as doubling of plasma creatinine or graft failure. Multivariable Cox regression analyses, adjusted for potential confounders, were used to study the associations of dietary acid load with kidney endpoint. We evaluated potential mediation effects of venous HCO3− , urinary HCO3− excretion, urinary ammonium (NH4+) excretion, titratable acid excretion, and net acid excretion on the association between NEAP and kidney endpoint. Results: Median NEAPFFQ and NEAPUrine were 40 (Interquartile range [IQR] 35-45) and 54 (IQR 44-66) mEq/day, respectively. During a median follow-up time of 5.3 (IQR 4.1-6.0) years, 121 (19%) participants reached kidney endpoint. After multivariable adjustment, NEAPFFQ and NEAPUrine (per SD higher) were independently associated with higher risk for kidney endpoint (hazard ratio [HR] 1.33; 95% confidence interval [CI] 1.12-1.57, P=0.001 and HR 95%CI, 1.44 [1.24-1.69], P<0.001 resp.). Baseline venous HCO3− mediated 20% of the association between NEAPFFQ and kidney endpoint. Baseline venous HCO3−, urinary NH4+ excretion and net acid excretion mediated 25%, -14% and -18% resp. of the association between NEAPUrine and kidney endpoint. Conclusion: Higher dietary acid load was associated with a higher risk of doubling of plasma creatinine or graft failure, and this association was partly mediated by venous HCO3−, urinary NH4+ and net acid excretion.


1988 ◽  
Vol 255 (4) ◽  
pp. F763-F770 ◽  
Author(s):  
A. M. Kaufman ◽  
T. Kahn

Studies were performed to investigate the role of concomitant chloride depletion in potassium-depletion alkalosis in the rat and the relationship between potassium depletion, plasma bicarbonate (PHCO3), and net acid excretion. 1) Selective potassium depletion (K-DEPL), potassium plus chloride depletion (KCl-DEPL), or selective chloride depletion (Cl-DEPL) was produced by administering a selectively potassium-, potassium and chloride-, or selectively chloride-deficient diet. In K-DEPL and KCl-DEPL rat, PHCO3 increased progressively and similarly during a 38-day period of restriction, whereas net acid excretion was similar and not elevated in either group. Cl-DEPL did not result in alkalosis. Chloride administration without potassium in alkalotic KCl-DEPL rats did not result in a sustained significant decrease in PHCO3. Potassium administration without chloride in alkalotic KCl-DEPL rats decreased PHCO3. Thus concomitant chloride depletion plays a minimal role in the alkalosis produced by dietary-induced potassium depletion. 2) Administration of a chronic acid load to alkalotic K-DEPL rats did not decrease PHCO3, and net acid excretion increased similarly as in normals. In K-DEPL rats after PHCO3 was reduced toward normal levels with acetazolamide, net acid excretion increased sharply above base-line values and PHCO3 increased markedly. Thus the alkalotic K-DEPL rat maintains the ability to excrete a chronic acid load, and a reduction in PHCO3 elicits an increase in acid excretion to restore the initial acid-base condition. These studies suggest that potassium depletion alters the set-point at which the kidney maintains PHCO3.


2000 ◽  
Vol 57 (3) ◽  
pp. 152-160 ◽  
Author(s):  
Morselli ◽  
Neuenschwander ◽  
Perrelet ◽  
Lippuner

Um zur Prävention der Osteoporose beizutragen, sollte eine Diät idealerweise folgende Kriterien erfüllen: Osteoporosediät ist keine Kalorienreduktionsdiät, da Körpergewicht und Knochenmasse positiv miteinander assoziiert sind. Die Osteoporosediät soll den jeweiligen Calciumbedarf, der unter anderem vom Alter abhängt, voll abdecken. Fasern der Weizenkleie, Phytat und Oxalat aus Bohnen, Spinat und Rhabarber sowie Koffein sollten mit Vorsicht genossen werden, da sie die gastro-intestinale Calciumabsorption beeinträchtigen. Eine chronische nutritiv-bedingte Säurebelastung des Körpers äußert sich in einer gesteigerten Calciurie und kann sich insbesondere in Kombination mit einer geringen Calciumzufuhr ungünstig auf den Knochen auswirken. Ausschlaggebend ist dabei die PRAL (Potential Renal Acid Load) eines Nahrungsmittels, d.h. dessen Potential, während der Verstoffwechselung Säure zu produzieren. Fleischprodukte, aber auch proteinreiche Käsesorten haben eine hohe PRAL, Milch und Joghurt eine niedrige. Früchte und Gemüse (mit Ausnahme von Spargeln) weisen eine negative PRAL auf, wirken also alkalisierend und sind demzufolge günstig für den Knochenmetabolismus. Die Osteoporosediät verbietet eine hohe Kochsalzzufuhr, da diese via pH-Verschiebung ebenfalls zur erhöhten Calciumausscheidung im Urin führt. Eine ausreichende Eiweißzufuhr muß andererseits gewährleistet sein, damit die für die Knochenmatrix-Synthese essenziellen Aminosäuren zur Verfügung stehen. Das Verhältnis Calcium (mg) zu Protein (g) sollte dabei möglichst 20:1 nicht unterschreiten. Wesentliche Bestandteile der Osteoporose-Diät sind außerdem Magnesium sowie die Vitamine B6 (Kollagenbildung), B12 (Osteoblastenaktivität), C (Kollagensynthese), D (intestinale Kalziumabsorption, Osteoblastenaktivität), E (Knochenwachstum) und K (Gammacarboxylierung von Osteokalzin und Matrixproteinen). Eine exzessive Zufuhr von Vitamin A wirkt sich schädlich auf den Knochen aus. Die Spurenelemente Kupfer, Mangan und Zink sind unentbehrlich für das Knochenwachstum. Phytoöstrogene haben in der vom Menschen aufgenommenen Menge kaum Auswirkungen auf den Knochen.


2010 ◽  
Vol 298 (4) ◽  
pp. R870-R876 ◽  
Author(s):  
Christopher A. Cooper ◽  
Jonathan M. Whittamore ◽  
Rod W. Wilson

Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish.


1989 ◽  
Vol 257 (2) ◽  
pp. F170-F176 ◽  
Author(s):  
J. C. Brown ◽  
R. K. Packer ◽  
M. A. Knepper

Bicarbonate is formed when organic anions are oxidized systemically. Therefore, changes in organic anion excretion can affect systemic acid-base balance. To assess the role of organic anions in urinary acid-base excretion, we measured urinary excretion in control rats, NaHCO3-loaded rats, and NH4Cl-loaded rats. Total organic anions were measured by the titration method of Van Slyke. As expected, NaHCO3 loading increased urine pH and decreased net acid excretion (NH4+ + titratable acid - HCO3-), whereas NH4Cl loading had the opposite effect. Organic anion excretion was increased in response to NaHCO3 loading and decreased in response to NH4Cl loading. We quantified the overall effect of organic ion plus inorganic buffer ion excretion on acid-base balance. The amounts of organic anions excreted by all animals in this study were greater than the amounts of NH4+, HCO3-, or titratable acidity excreted. In addition, in response to acid and alkali loading, changes in urinary organic anion excretion were 40-50% as large as changes in net acid excretion. We conclude that, in rats, regulation of organic anion excretion can contribute importantly to the overall renal response to acid-base disturbances.


1998 ◽  
Vol 274 (1) ◽  
pp. F97-F103 ◽  
Author(s):  
Donald E. Wesson

We examined whether dietary acid that increases net acid excretion (NAE) without measurably decreasing plasma pH or total CO2(tCO2) causes net acid retention. Control rats drinking distilled H2O were compared with those drinking 40 mM (NH4)2SO4, 40 mM Na2SO4, or drinking Na2SO4and given aldosterone (Na2SO4+ Aldo) to increase NAE without dietary acid. Systemic plasma tCO2 increased in Na2SO4+ Aldo animals, but systemic and stellate vessel plasma tCO2 and pH were not different from control among remaining groups. NAE increased in (NH4)2SO4and Na2SO4+ Aldo but not in Na2SO4animals. Blood base excess (BBE) decreased compared with its respective baseline in (NH4)2SO4(−0.44 ± 0.06 vs. 0.66 ± 0.04 μmol/ml; P < 0.01, paired t-test), increased in Na2SO4+ Aldo (0.79 ± 0.05 vs. 0.61 ± 0.03 μmol/ml; P < 0.04, paired t-test), but was unchanged in Na2SO4animals. Renal cortical H+ content assessed by microdialysis of the renal cortex in situ increased in (NH4)2SO4, decreased in Na2SO4+ Aldo, but was unchanged in Na2SO4animals. The data show that dietary acid sufficient to increase NAE without decreasing plasma tCO2 or pH nevertheless decreases BBE and increases renal cortical acid content, consistent with net acid retention.


Sign in / Sign up

Export Citation Format

Share Document