scholarly journals Investigating associations between child bone mineral density and vitamin D status, diet, physical activity, and body composition at 5 years of age – Findings from the ROLO Kids Study

2018 ◽  
Vol 77 (OCE3) ◽  
Author(s):  
MK McVey ◽  
AA Geraghty ◽  
EC O'Brien ◽  
MJ McKenna ◽  
MT Kilbane ◽  
...  
2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Anna Kopiczko ◽  
Monika Łopuszańska-Dawid ◽  
Karol Gryko

Abstract Summary The aim of the study was to assess the associations of bone mineral density and bone mass with physical activity levels, vitamin D, phosphorus, magnesium, total cholesterol and triglyceride concentration and body composition in young women and men. Physical activity has the most significant effect on bone status especially in men. Purpose The aim of the study was to assess the associations of bone mineral density and bone mass with physical activity levels, vitamin D, phosphorus, magnesium, total cholesterol and triglyceride concentration and body composition in young women and men. Methods One hundred subjects aged 19–24 years were included. Bone mineral density (BMD) in distal and proximal parts was evaluated by forearm densitometry. Body composition was analysed with the use of JAWON-Medical-x-scan. The following biochemical indicators were analysed: 25(OH) D and 1,25(OH)2D, magnesium, phosphorus, total cholesterol and triglycerides. Physical activity levels were assessed by interview. Results Significant correlations between BMD and physical activity, skeletal muscle mass and body fat percentage were revealed in men. Among women, considerably weaker correlations of BMD with body composition and physical activity were noted than in men. BMD in the distal part correlated only with lean body mass, soft lean mass and body fat percentage. The strongest relationship between physical activity and bone mineral status parameters was noted for BMD in men. In women, physical activity did not affect BMD. Conclusions Physical activity has the most significant effect on bone status especially in men.


2019 ◽  
Vol 179 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Marco K. McVey ◽  
Aisling A. Geraghty ◽  
Eileen C. O’Brien ◽  
Malachi J. McKenna ◽  
Mark T. Kilbane ◽  
...  

Abstract Bone health is extremely important in early childhood because children with low bone mineral density (BMD) are at a greater risk of bone fractures. While physical activity and intake of both calcium and vitamin D benefit BMD in older children, there is limited research on the determinants of good bone health in early childhood. The aim of this cross-sectional study was to investigate the impact of diet, physical activity, and body composition on BMD at five years of age. Dietary intakes and physical activity levels were measured through questionnaires. Whole body BMD was measured by dual-energy X-ray absorptiometry in 102 children. Child weight, height, circumferences, skinfolds and serum 25-hydroxyvitamin D (25OHD) concentrations were assessed. There was no association between BMD and dietary calcium, dietary vitamin D, 25OHD, physical activity, or sedentary behaviour. Several measures of body composition were significantly positively associated with BMD; however, neither fat mass nor lean body mass was associated with BMD. Conclusion: Although we found no association between self-reported dietary and lifestyle factors and bone health in early years, increased body size was linked with higher BMD. These findings are important as identifying modifiable factors that can improve bone health at a young age is of utmost importance.What is Known:• Bone health is extremely important in early childhood, as children with low bone mineral density (BMD) are at greater risk of bone fractures.• Physical activity has been found to be beneficial for bone health in adolescents, and body composition has also been associated with BMD in teenage years.• Limited research on the determinants of good bone health in early childhood.What is New:• No association between self-reported lifestyle and dietary factors with bone health in early childhood.• Increased body size was associated with higher BMD at five years of age.


2017 ◽  
Author(s):  
Taryn Smith ◽  
Laura Tripkovic ◽  
Camilla Damsgaard ◽  
Christian Molgaard ◽  
Aine Hennessy ◽  
...  

2019 ◽  
Author(s):  
Elzbieta Jakubowska-Pietkiewicz ◽  
Maciej Porczynski ◽  
Ewa Rychlowska ◽  
Paulina Albinska ◽  
Elzbieta Wozniak ◽  
...  

2021 ◽  
pp. 1-33
Author(s):  
Signe Monrad Nørgaard ◽  
Christine Dalgård ◽  
Malene Søborg Heidemann ◽  
Anders Jørgen Schou ◽  
Henrik Thybo Christesen

Abstract Vitamin D supplementation in infancy is recommended to prevent rickets. At the population level, its effects on bone mineralisation are largely unknown. We aimed to explore whether adherence to national vitamin D supplementation guidelines (10 µg/day up to age 2 years), supplementation at ages 5 and 7 years, and serum 25-hydroxyvitamin D (s-25(OH)D) at various time points associated with bone mineral density (BMD) at age 7 years in the Odense Child Cohort, Denmark (n=1,194). High adherence was defined as supplementation with 10 µg vitamin D 6-7 times per week during ≥ 80 % of the observation time. S-25(OH)D was analysed using liquid chromatography-tandem mass spectrometry. Total-body-less-head (TBLH) BMD was measured by dual-energy X-ray absorptiometry. At median age 18.1 months, 53.9 % (n=475/881) reported high adherence. The median s-25(OH)D was 64.7, 78.8, 46.0, and 71.8 nmol/l in early pregnancy, late pregnancy, cord blood, and at 5 years, respectively. The mean (SD) TBLH BMD at median age 7.1 years was 0.613 (0.049) g/cm2 (z-score +0.363 (0.824)). In adjusted analyses, vitamin D supplementation up to 18 months, and at 5 and 7 years, was not associated with TBLH BMD. Similarly, no robust associations were found between TBLH BMD and s-25(OH)D at any time point. No associations were found for TBLH bone mineral concentration or bone area. In this population with relatively high s-25(OH)D concentrations, no consistent associations were found between adherence to vitamin D supplementation recommendations or vitamin D status in pregnancy or childhood, and bone mineralisation at age 7 years.


Sign in / Sign up

Export Citation Format

Share Document