What isBabesia microti?

Parasitology ◽  
2003 ◽  
Vol 127 (4) ◽  
pp. 301-309 ◽  
Author(s):  
H. K. GOETHERT ◽  
S. R. TELFORD

Babesia microti(Apicomplexa: Piroplasmida) has historically been considered a common parasite of Holarctic rodents. However, human babesiosis due to this species has generally been limited to the northeastern seaboard of the United States and Minnesota and Wisconsin. The absence of reports ofB. microtibabesiosis from sites where the agent is enzootic, such as in western Europe, remains unexplained. Previous work focusing on the 18S rDNA demonstrates little sequence diversity among samples from allopatric host populations across a wide geographical area. It may be that genetic diversity is underestimated due to sample size or the gene analysed. Accordingly, we collected blood or spleen samples from American or Eurasian animals with parasites that were morphologically consistent withB. microti, amplified the 18S rDNA andbeta-tubulin gene, and conducted phylogenetic analysis. Surprisingly, what was considered to be ‘B. microti’ by microscopy appears to be a diverse species complex. We identify 3 distinct clades within this complex, including parasites from non-rodent hosts. Rodent parasites comprise 2 clades, one representing zoonotic isolates, and the other apparently maintained in microtine rodents, and therefore their morphological detection within animals from a site does not necessarily imply a risk to public health.

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1447
Author(s):  
Abhinav Kumar ◽  
Jane O'Bryan ◽  
Peter J. Krause

Babesiosis is an emerging tick-borne disease caused by intraerythrocytic protozoa that are primarily transmitted by hard-bodied (Ixodid) ticks and rarely through blood transfusion, perinatally, and organ transplantation. More than 100 Babesia species infect a wide spectrum of wild and domestic animals worldwide and six have been identified as human pathogens. Babesia microti is the predominant species that infects humans, is found throughout the world, and causes endemic disease in the United States and China. Babesia venatorum and Babesia crassa-like agent also cause endemic disease in China. Babesia divergens is the predominant species in Europe where fulminant cases have been reported sporadically. The number of B. microti infections has been increasing globally in recent decades. In the United States, more than 2000 cases are reported each year, although the actual number is thought to be much higher. In this review of the epidemiology of human babesiosis, we discuss epidemiologic tools used to monitor disease location and frequency; demographics and modes of transmission; the location of human babesiosis; the causative Babesia species in the Americas, Europe, Asia, Africa, and Australia; the primary clinical characteristics associated with each of these infections; and the increasing global health burden of this disease.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1563
Author(s):  
Scott Meredith ◽  
Miranda Oakley ◽  
Sanjai Kumar

The biology of intraerythrocytic Babesia parasites presents unique challenges for the diagnosis of human babesiosis. Antibody-based assays are highly sensitive but fail to detect early stage Babesia infections prior to seroconversion (window period) and cannot distinguish between an active infection and a previously resolved infection. On the other hand, nucleic acid-based tests (NAT) may lack the sensitivity to detect window cases when parasite burden is below detection limits and asymptomatic low-grade infections. Recent technological advances have improved the sensitivity, specificity and high throughput of NAT and the antibody-based detection of Babesia. Some of these advances include genomics approaches for the identification of novel high-copy-number targets for NAT and immunodominant antigens for superior antigen and antibody-based assays for Babesia. Future advances would also rely on next generation sequencing and CRISPR technology to improve Babesia detection. This review article will discuss the historical perspective and current status of technologies for the detection of Babesia microti, the most common Babesia species causing human babesiosis in the United States, and their implications for early diagnosis of acute babesiosis, blood safety and surveillance studies to monitor areas of expansion and emergence and spread of Babesia species and their genetic variants in the United States and globally.


Author(s):  
Suzanne Moshier ◽  
William O'Dell ◽  
Raychel Watkins ◽  
Aelita Pinter

In a review of the parasites of Microtus, Timm (1985) lists no protozoan endoparasites whatsoever for this genus. The role of parasitism, whether macro- or microparasites, and whether endo- or ectoparasites, in the demographic machinery of microtines is poorly understood. Timm (1985) astutely observes that one of the most challenging and fruitful directions of future research with Microtus will be the statistical quantification of the cost of parasitism. In addition, since humans in the Grand Teton National Park may encounter protozoon parasites that are potentially pathogenic to humans, it is useful to characterize the occurrence and biology of such organisms in the parko Babesia microti, a parasitic protozoon, is transmitted by a tick vector and reproduces in the erythrocytes of its mammalian host. Initially, Babesia was thought to be restricted to small mammals; however, in 1970 the first human cases were diagnosed in residents of Nantucket Island, Massachusetts (Western et al, 1970). Over 200 cases of human babesiosis have been documented worldwide. In the United States, human babesiosis is caused by B. microti. Most of these cases have occurred in the eastern United States. The earliest report of an organism that fits the description of Babesia in human erythrocytes is that of Wilson et al. (1904), who found an unknown organism in human erythrocytes while investigating the cause of Rocky Mountain Spotted fever. Documented cases of babesiosis in many areas of the United States are increasing (Steketee et al, 1985). As humans insert themselves into places where they have historically been present only occasionally, they often contract new diseases. A second protozoon parasite, Hepatozoon sp., which is widespread in small mammals in Europe, is also found in reptiles throughout the world. The record of Hepatozoon in North American small mammals is not extensive. Fewer than 10 species of mammals have been shown to harbor Hepatozoon parasites. Like Babesia, Hepatozoon is a two-host parasite. Unlike Babesia, for which the intermediate host is always a tick, the intermediate host in the Hepatozoon may be a tick, a mite, a flea, or a mosquito. The method of transmission by the vector also differs in the two parasites. Babesia is transmitted in saliva when the tick bites, whereas Hepatozoon infection requires the vertebrate host to swallow the vector. In our 1994 studies, we sought to extend knowledge of these two parasites. The specific objectives for 1994 were: to sample specific populations of M. molltanus, in which we have previously documented Hepatozoon infections, to determine whether there are differences in the infection rates at different study sites in the park; to search for the vector of Hepatozoon sp. infections in M. montanus by examining ectoparasites; to collect and rear ticks from M. montanus for use in R microti transmission studies; and to complete a comparison of the spleen histology of babesiosis in infected and uninfected laboratory animals, with inclusion of data from wild animals, as available. Our long-term objectives are to document the effects and cost of parasitism on vole populations and to determine the potential of small mammals of Grand Teton National Park to serve as reservoirs of human parasites.


2000 ◽  
Vol 68 (5) ◽  
pp. 2783-2790 ◽  
Author(s):  
Michael J. Lodes ◽  
Raymond L. Houghton ◽  
Elizabeth S. Bruinsma ◽  
Raodoh Mohamath ◽  
Lisa D. Reynolds ◽  
...  

ABSTRACT Increased recognition of the prevalence of human babesiosis in the United States, together with rising concern about the potential for transmission of this infection by blood transfusion, has provided motivation to develop definitive serologic and molecular tests for the causative agent, Babesia microti. To develop more sensitive and specific assays for B. microti, we screened a genomic expression library with patient serum pools. This screening resulted in the identification of three classes of novel genes and an additional two novel, unrelated genes, which together encode a total of 17 uniqueB. microti antigens. The first class (BMN1-2 family) of genes encodes seven closely related antigens with a degenerate six-amino-acid repeat that shows limited homology toPlasmodium sp. merozoite and sporozoite surface antigens. A second class (BMN1-8 family) of genes encodes six related antigens, and the third class (BMN1-17 family) of genes encodes two related antigens. The two remaining genes code for novel and unrelated sequences. Among the three classes of antigens and remaining novel sequences, five were chosen to code for the most immunodominant antigens (BMN1-2, -9, -15, and -17 and MN-10). Western blot analysis with the resulting recombinant proteins indicated that these antigens were targets of humoral immune responses during B. microti infection in humans.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1176
Author(s):  
Evan M. Bloch ◽  
Peter J. Krause ◽  
Laura Tonnetti

Babesia are tick-borne intra-erythrocytic parasites and the causative agents of babesiosis. Babesia, which are readily transfusion transmissible, gained recognition as a major risk to the blood supply, particularly in the United States (US), where Babesia microti is endemic. Many of those infected with Babesia remain asymptomatic and parasitemia may persist for months or even years following infection, such that seemingly healthy blood donors are unaware of their infection. By contrast, transfusion recipients are at high risk of severe babesiosis, accounting for the high morbidity and mortality (~19%) observed in transfusion-transmitted babesiosis (TTB). An increase in cases of tick-borne babesiosis and TTB prompted over a decade-long investment in blood donor surveillance, research, and assay development to quantify and contend with TTB. This culminated in the adoption of regional blood donor testing in the US. We describe the evolution of the response to TTB in the US and offer some insight into the risk of TTB in other countries. Not only has this response advanced blood safety, it has accelerated the development of novel serological and molecular assays that may be applied broadly, affording insight into the global epidemiology and immunopathogenesis of human babesiosis.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 386
Author(s):  
Tal Azagi ◽  
Ryanne I. Jaarsma ◽  
Arieke Docters van Leeuwen ◽  
Manoj Fonville ◽  
Miriam Maas ◽  
...  

Human babesiosis in Europe has been attributed to infection with Babesia divergens and, to a lesser extent, with Babesia venatorum and Babesia microti, which are all transmitted to humans through a bite of Ixodes ricinus. These Babesia species circulate in the Netherlands, but autochthonous human babesiosis cases have not been reported so far. To gain more insight into the natural sources of these Babesia species, their presence in reservoir hosts and in I. ricinus was examined. Moreover, part of the ticks were tested for co-infections with other tick borne pathogens. In a cross-sectional study, qPCR-detection was used to determine the presence of Babesia species in 4611 tissue samples from 27 mammalian species and 13 bird species. Reverse line blotting (RLB) and qPCR detection of Babesia species were used to test 25,849 questing I. ricinus. Fragments of the 18S rDNA and cytochrome c oxidase subunit I (COI) gene from PCR-positive isolates were sequenced for confirmation and species identification and species-specific PCR reactions were performed on samples with suspected mixed infections. Babesia microti was found in two widespread rodent species: Myodes glareolus and Apodemus sylvaticus, whereas B. divergens was detected in the geographically restricted Cervus elaphus and Bison bonasus, and occasionally in free-ranging Ovis aries. B. venatorum was detected in the ubiquitous Capreolus capreolus, and occasionally in free-ranging O. aries. Species-specific PCR revealed co-infections in C. capreolus and C. elaphus, resulting in higher prevalence of B. venatorum and B. divergens than disclosed by qPCR detection, followed by 18S rDNA and COI sequencing. The non-zoonotic Babesia species found were Babesia capreoli, Babesia vulpes, Babesia sp. deer clade, and badger-associated Babesia species. The infection rate of zoonotic Babesia species in questing I. ricinus ticks was higher for Babesia clade I (2.6%) than Babesia clade X (1.9%). Co-infection of B. microti with Borrelia burgdorferi sensu lato and Neoehrlichia mikurensis in questing nymphs occurred more than expected, which reflects their mutual reservoir hosts, and suggests the possibility of co-transmission of these three pathogens to humans during a tick bite. The ubiquitous spread and abundance of B. microti and B. venatorum in their reservoir hosts and questing ticks imply some level of human exposure through tick bites. The restricted distribution of the wild reservoir hosts for B. divergens and its low infection rate in ticks might contribute to the absence of reported autochthonous cases of human babesiosis in the Netherlands.


2017 ◽  
Vol 55 (10) ◽  
pp. 2903-2912 ◽  
Author(s):  
Lars F. Westblade ◽  
Matthew S. Simon ◽  
Blaine A. Mathison ◽  
Laura A. Kirkman

ABSTRACT Babesia microti , a zoonotic intraerythrocytic parasite, is the primary etiological agent of human babesiosis in the United States. Human infections range from subclinical illness to severe disease resulting in death, with symptoms being related to host immune status. Despite advances in our understanding and management of B. microti , the incidence of infection in the United States has increased. Therefore, research focused on eradicating disease and optimizing clinical management is essential. Here we review this remarkable organism, with emphasis on the clinical, diagnostic, and therapeutic aspects of human disease.


2000 ◽  
Vol 38 (12) ◽  
pp. 4511-4516 ◽  
Author(s):  
Atsuko Saito-Ito ◽  
Masayoshi Tsuji ◽  
Qiang Wei ◽  
Shenyi He ◽  
Toshimitsu Matsui ◽  
...  

We have isolated piroplasms from a patient who developed the first case of human babesiosis in Japan by using NOD/shi-scidmice whose circulating erythrocytes (RBCs) had been replaced with human RBCs (hu-RBC-SCID mice). Following inoculation of the patient's blood specimen into hu-RBC-SCID mice, parasites proliferated within the human RBCs in the mice, resulting in a high level of parasitemia. Parasite DNA was prepared from blood samples of the patient and the mice, and the nuclear small-subunit rRNA gene (rDNA) was amplified and sequenced. Both DNA samples gave rise to identical sequences which showed the highest degree of homology (99.2%) with the Babesia microti rDNA. Because the patient had received a blood transfusion before the onset of babesiosis, we investigated the eight donors who were involved. Their archived blood samples were analyzed for specific antibody and parasite DNA; only a single donor was found to be positive by both tests, and the parasite rDNA sequence from the donor coincided with that derived from the patient. The donor's serum exhibited a high antibody titer against the isolate from the patient, whereas it exhibited only a weak cross-reaction against B. microti strains isolated in the United States. We conclude that the first Japanese babesiosis case occurred due to a blood transfusion and that the etiological agent is an indigenous Japanese parasite which may be a geographical variant of B. microti. Our results also demonstrated the usefulness of hu-RBC-SCID mice for isolation of parasites from humans and for maintenance of the parasite infectivity for human RBCs.


2016 ◽  
Vol 82 (22) ◽  
pp. 6624-6632 ◽  
Author(s):  
Aya Zamoto-Niikura ◽  
Shigeru Morikawa ◽  
Ken-Ichi Hanaki ◽  
Patricia J. Holman ◽  
Chiaki Ishihara

ABSTRACTThe U.S. lineage, one of the major clades in theBabesia microtigroup, is known as a causal agent of human babesiosis mostly in the northeastern and upper midwestern United States. This lineage, however, also is distributed throughout the temperate zone of Eurasia with several reported human cases, although convincing evidence of the identity of the specific vector(s) in this area is lacking. Here, the goal was to demonstrate the presence of infectious parasites directly in salivary glands ofIxodes persulcatus, from which U.S. lineage genetic sequences have been detected in Asia, and to molecularly characterize the isolates. Five PCR-positive specimens were individually inoculated into hamsters, resulting in infections in four; consequently, four strains were newly established. Molecular characterization, including 18S rRNA, β-tubulin, andCCT7gene sequences, as well as Western blot analysis and indirect fluorescent antibody assay, revealed that all four strains were identical to each other and to the U.S. lineage strains isolated from rodents captured in Japan. The 18S rRNA gene sequence from the isolates was identical to those fromI. persulcatusin Russia and China, but the genetic and antigenic profiles of the Japanese parasites differ from those in the United States and Europe. Together with previous epidemiological and transmission studies, we conclude thatI. persulcatusis likely the principal vector for theB. microtiU.S. lineage in Japan and presumably in northeastern Eurasia.IMPORTANCEThe major cause of human babesiosis, the tick-borne blood parasiteBabesia microti, U.S. lineage, is widely distributed in the temperate Northern Hemisphere. However, the specific tick vector(s) remains unidentified in Eurasia, where there are people with antibodies to theB. microtiU.S. lineage and cases of human babesiosis. In this study, the first isolation ofB. microtiU.S. lineage fromIxodes persulcatusticks, a principal vector for many tick-borne diseases, is described in Japan. Limited antigenic cross-reaction was found between the Japan and United States isolates. Thus, current serological tests based on U.S. isolates may underestimateB. microtioccurrence outside the United States. This study and previous studies indicate thatI. persulcatusis part of theB. microtiU.S. lineage life cycle in Japan and, presumably, northeastern Eurasia. This report will be important for public health, especially since infection may occur through transfusion, and also to researchers in the field of parasitology.


1991 ◽  
Vol 30 (2) ◽  
pp. 213-217
Author(s):  
Mir Annice Mahmood

Foreign aid has been the subject of much examination and research ever since it entered the economic armamentarium approximately 45 years ago. This was the time when the Second World War had successfully ended for the Allies in the defeat of Germany and Japan. However, a new enemy, the Soviet Union, had materialized at the end of the conflict. To counter the threat from the East, the United States undertook the implementation of the Marshal Plan, which was extremely successful in rebuilding and revitalizing a shattered Western Europe. Aid had made its impact. The book under review is by three well-known economists and is the outcome of a study sponsored by the Department of State and the United States Agency for International Development. The major objective of this study was to evaluate the impact of assistance, i.e., aid, on economic development. This evaluation however, was to be based on the existing literature on the subject. The book has five major parts: Part One deals with development thought and development assistance; Part Two looks at the relationship between donors and recipients; Part Three evaluates the use of aid by sector; Part Four presents country case-studies; and Part Five synthesizes the lessons from development assistance. Part One of the book is very informative in that it summarises very concisely the theoretical underpinnings of the aid process. In the beginning, aid was thought to be the answer to underdevelopment which could be achieved by a transfer of capital from the rich to the poor. This approach, however, did not succeed as it was simplistic. Capital transfers were not sufficient in themselves to bring about development, as research in this area came to reveal. The development process is a complicated one, with inputs from all sectors of the economy. Thus, it came to be recognized that factors such as low literacy rates, poor health facilities, and lack of social infrastructure are also responsible for economic backwardness. Part One of the book, therefore, sums up appropriately the various trends in development thought. This is important because the book deals primarily with the issue of the effectiveness of aid as a catalyst to further economic development.


Sign in / Sign up

Export Citation Format

Share Document