Infection, specificity and host manipulation of Australapatemon sp. (Trematoda, Strigeidae) in two sympatric species of leeches (Hirudinea)

Parasitology ◽  
2017 ◽  
Vol 144 (10) ◽  
pp. 1346-1355
Author(s):  
ANSSI KARVONEN ◽  
ANNA FALTÝNKOVÁ ◽  
JOCELYN MAH CHOO ◽  
E. TELLERVO VALTONEN

SUMMARYFactors that drive parasite specificity and differences in infection dynamics among alternative host species are important for ecology and evolution of host–parasite interactions, but still often poorly known in natural systems. Here, we investigated spatiotemporal dynamics of infection, host susceptibility and parasite-induced changes in host phenotype in a rarely explored host–parasite system, the Australapatemon sp. trematode infecting two sympatric species of freshwater leeches, Erpobdella octoculata and Helobdella stagnalis. We show significant variation in infection abundance between the host species in both space and time. Using experimental infections, we also show that most of this variation likely comes from interspecific differences in exposure rather than susceptibility. Moreover, we demonstrate that the hiding behaviour of E. octoculata, but not that of H. stagnalis, was impaired by the infection irrespective of the parasite abundance. This may increase susceptibility of E. octoculata to predation by the final avian host. We conclude that differences in patterns of infection and in behavioural alterations among alternative sympatric host species may arise in narrow spatial scales, which emphasises the importance of local infection and transmission dynamics for parasite life cycles.

2020 ◽  
Author(s):  
Katherine E Roberts ◽  
Ben Longdon

AbstractThe likelihood of a successful host shift of a parasite to a novel host species can be influenced by environmental factors that can act on both the host and parasite. Changes in nutritional resource availability have been shown to alter pathogen susceptibility and the outcome of infection in a range of systems. Here we examined how dietary protein to carbohydrate altered susceptibility in a large cross infection experiment. We infected 27 species of Drosophilidae with an RNA virus on three food types of differing protein to carbohydrate ratios. We then measured how viral load and mortality across species was affected by changes in diet. We found that changes in the protein:carbohydrate in the diet did not alter the outcomes of infection, with strong positive inter-species correlations in both viral load and mortality across diets, suggesting no species by diet interaction. Mortality and viral load were strongly positively correlated, and this association was consistent across diets. This suggests changes in diet may give consistent outcomes across host species, and may not be universally important in determining host susceptibility to pathogens.Impact StatementA successful host shift of a parasite from one susceptible species to a novel host can be influenced by many ecological factors. Changes in host diet can alter the immune response and outcomes of host–parasite interactions and could potentially alter the outcome of a virus host shift. To investigate, we infected 27 species of Drosophilidae with an RNA virus (DCV) across three food types with differing protein to carbohydrate ratios. We then looked at pathogen loads and survival of infected hosts compared to uninfected controls. Changes in the ratio of protein to carbohydrate did not alter susceptibility to DCV across host species.


Parasitology ◽  
2018 ◽  
Vol 146 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Jesús Veiga ◽  
Paloma De Oña ◽  
Beatriz Salazar ◽  
Francisco Valera

AbstractHost range and parasite specificity determine key epidemiological, ecological and evolutionary aspects of host–parasite interactions. Parasites are usually classified as generalists or specialists based on the number of hosts they feed on. Yet, the requirements of the various stages of a parasite may influence the suitability of a given host species. Here, we investigate the generalist nature of three common ectoparasites (the dipteran Carnus hemapterus and two species of louse flies, Pseudolynchia canariensis and Ornithophila metallica), exploiting two avian host species (the European roller Coracias garrulus and the Rock pigeon Columba livia), that frequently occupy the same breeding sites. We explore the prevalence and abundance of both the infective and the puparial stages of the ectoparasites in both host species. Strong preferences of Pseudolynchia canariensis for pigeons and of Carnus hemapterus for rollers were found. Moderate prevalence of Ornithophila metallica was found in rollers but this louse fly avoided pigeons. In some cases, the infestation patterns observed for imagoes and puparia were consistent whereas in other cases host preferences inferred from imagoes differed from the ones suggested by puparia. We propose that the adult stages of these ectoparasites are more specialist than reported and that the requirements of non-infective stages can restrict the effective host range of some parasites.


2008 ◽  
Vol 53 (2) ◽  
Author(s):  
Davor Vrcibradic ◽  
Luciano Anjos ◽  
Joaquim Vicente ◽  
Charles Bursey

AbstractWe present data on helminths harboured by two sympatric species of Enyalius Wagler, 1830 (E. iheringiii Boulenger, 1885 and E. perditus Jackson, 1978) from the Atlantic Rainforest of the Ilha de São Sebastião, in São Paulo state, southeastern Brazil. Six helminth species were found in the hosts: five nematodes (Cosmocerca sp., Oswaldocruzia burseyi Durette-Desset, Anjos et Vrcibradic, 2006, Oswaldocruzia fredi Durette-Desset, Anjos et Vrcibradic, 2006, Rhabdias sp., and Strongyluris oscari Travassos, 1923), and one acanthocephalan (Acanthocephalus sp.). Overall helminth prevalences were relatively high for both species [6/6 (100%) for E. iheringii and 9/14 (64%) for E. perditus]. The helminth assemblages from both host species were depauperate and dominated by generalist helminths with direct life-cycles.


2019 ◽  
Author(s):  
Chloé Suzanne Berger ◽  
Nadia Aubin-Horth

ABSTRACTParasites with complex life cycles have been proposed to manipulate the behaviour of their intermediate hosts to increase the probability of reaching their final host. The cause of these drastic behavioural changes could be manipulation factors released by the parasite in its environment (the secretome), but this has rarely been assessed. We studied a non-cerebral parasite, the cestode Schistocephalus solidus, and its intermediate host, the threespine stickleback (Gasterosteus aculeatus), whose response to danger becomes significantly diminished when infected. These altered behaviours appear only during late infection, when the worm is ready to reproduce in its final avian host. Sympatric host-parasite pairs show higher infection success for parasites, suggesting that the secretome effects could differ for allopatric host-parasite pairs with independent evolutionary histories. We tested the effects of secretome exposure on behaviour by using secretions from the early and late infection of S. solidus and by injecting them in healthy sticklebacks from a sympatric and allopatric population. Contrary to our prediction, secretome from late infection worms did not result in more risky behaviours, but secretome from early infection resulted in more cautious hosts, only in fish from the allopatric population. Our results suggest that the secretome of Schistocephalus solidus contains molecules that can affect host behaviour, that the causes underlying the behavioural changes in infected sticklebacks are multifactorial, and that local adaptation between host-parasite pairs may extend to the response to the parasite’s secretome content.


2020 ◽  
Vol 287 (1925) ◽  
pp. 20200412 ◽  
Author(s):  
Chloé Suzanne Berger ◽  
Nadia Aubin-Horth

Parasites with complex life cycles have been proposed to manipulate the behaviour of their intermediate hosts to increase the probability of reaching their final host. The cause of these drastic behavioural changes could be manipulation factors released by the parasite in its environment (the secretome), but this has rarely been assessed. We studied a non-cerebral parasite, the cestode Schistocephalus solidus , and its intermediate host, the threespine stickleback ( Gasterosteus aculeatus ), whose response to danger becomes significantly diminished when infected. These altered behaviours appear only during late infection, when the worm is ready to reproduce in its final avian host. Sympatric host–parasite pairs show higher infection success for parasites, suggesting that the secretome effects could differ for allopatric host–parasite pairs with independent evolutionary histories. We tested the effects of secretome exposure on behaviour by using secretions from the early and late infection of S. solidus and by injecting them in healthy sticklebacks from a sympatric and allopatric population. Contrary to our prediction, secretome from late infection worms did not result in more risky behaviours, but secretome from early infection resulted in more cautious hosts, only in fish from the allopatric population. Our results suggest that the secretome of S. solidus contains molecules that can affect host behaviour, that the causes underlying the behavioural changes in infected sticklebacks are multifactorial and that local adaptation between host–parasite pairs may extend to the response to the parasite's secretome content.


2020 ◽  
Author(s):  
Nayden Chakarov ◽  
Helge Kampen ◽  
Anja Wiegmann ◽  
Doreen Werner ◽  
Staffan Bensch

Abstract Background: The behaviour of blood-sucking arthropods is a crucial determinant of blood protozoan distribution and hence of host-parasite coevolution, but it is very challenging to study in the wild. The molecular identification of parasite lineages in vectors can be a useful key to understand the behaviour and transmission patterns realised by these vectors. Methods: In this study, we collected blackflies around nests of three raptor species in the upper forest canopy in central Europe and examined the presence of vertebrate DNA and haemosporidian parasites in them. We molecularly analysed 156 blackfly individuals, their vertebrate blood meals, and the haemosporidian parasite lineages they carried. Results: We identified nine species of Simulium blackflies, largely belonging to the subgenera Nevermannia and Eusimulium. Only 1% of the collected specimens was visibly engorged, and only 4% contained remains of host DNA. However, in 29% of the blackflies Leucocytozoon lineages were identified, which is evidence of a previous blood meal on an avian host. Based on the known vertebrate hosts of the recorded Leucocytozoon lineages, we can infer that large and/or abundant birds, such as thrushes, crows, pigeons, birds of prey, owls and tits are the main targets of ornithophilic blackflies in the canopy. Blackfly species contained similar proportions of host group-specific parasite lineages and thus do not appear to be associated with particular host groups. Conclusions: The Leucocytozoon clade infecting thrushes, crows, and pigeons present in most represented blackfly species suggests a lack of association between hosts and blackflies, which can increase the probability of host switches of blood parasites. However, the composition of the simuliid species differed between nests of common buzzards, goshawks and red kites. This segregation can be explained by coinciding habitat preferences between host and vector, and may lead to the fast speciation of Leucocytozoon parasites. Thus, subtle ecological preferences and lack of host preference of vectors in the canopy may enable both parasite diversification and host switches, and enforce a habitat-dependent evolution of avian malaria parasites and related haemosporidia.


Author(s):  
E. Sánchez-García ◽  
A. Balaguer-Beser ◽  
R. Taborda ◽  
J. E. Pardo-Pascual

Beach and fluvial systems are highly dynamic environments, being constantly modified by the action of different natural and anthropic phenomena. To understand their behaviour and to support a sustainable management of these fragile environments, it is very important to have access to cost-effective tools. These methods should be supported on cutting-edge technologies that allow monitoring the dynamics of the natural systems with high periodicity and repeatability at different temporal and spatial scales instead the tedious and expensive field-work that has been carried out up to date. The work herein presented analyses the potential of terrestrial photogrammetry to describe beach morphology. Data processing and generation of high resolution 3D point clouds and derived DEMs is supported by the commercial Agisoft PhotoScan. Model validation is done by comparison of the differences in the elevation among the photogrammetric point cloud and the GPS data along different beach profiles. Results obtained denote the potential that the photogrammetry 3D modelling has to monitor morphological changes and natural events getting differences between 6 and 25 cm. Furthermore, the usefulness of these techniques to control the layout of a fluvial system is tested by the performance of some modeling essays in a hydraulic pilot channel.


2012 ◽  
Vol 87 (4) ◽  
pp. 400-408 ◽  
Author(s):  
E.A. Martínez-Salazar ◽  
T. Escalante ◽  
M. Linaje ◽  
J. Falcón-Ordaz

AbstractSpecies distribution modelling has been a powerful tool to explore the potential distribution of parasites in wildlife, being the basis of studies on biogeography.Vexillataspp. are intestinal nematodes found in several species of mammalian hosts, such as rodents (Geomyoidea) and hares (Leporidae) in the Nearctic and northern Neotropical regions. In the present study, we modelled the potential distribution ofVexillataspp. and their hosts, using exclusively species from the Geomyidae and Heteromyidae families, in order to identify their distributional patterns. Bioclimatic and topographic variables were used to identify and predict suitable habitats forVexillataand its hosts. Using these models, we identified that temperature seasonality is a significant environmental factor that influences the distribution of the parasite genus and its host. In particular, the geographical distribution is estimated to be larger than that predicted for its hosts. This suggests that the nematode has the potential to extend its geographical range and also its spectrum of host species. Increasing sample size and geographical coverage will contribute to recommendations for conservation of this host–parasite system.


Parasitology ◽  
2016 ◽  
Vol 144 (5) ◽  
pp. 692-697 ◽  
Author(s):  
KARINA D. RIVERA-GARCÍA ◽  
CÉSAR A. SANDOVAL-RUIZ ◽  
ROMEO A. SALDAÑA-VÁZQUEZ ◽  
JORGE E. SCHONDUBE

SUMMARYChanges in the specialization of parasite–host interactions will be influenced by variations in host species composition. We evaluated this hypothesis by comparing the composition of bats and bat flies within a roost cave over one annual. Five bat and five bat fly species occupied the cave over the course of the study. Bat species composition was 40% different in the rainy season compared with the dry–cold and dry–warm seasons. Despite the incorporation of three new bat species into the cave during the rainy season, bat fly species composition was not affected by seasonality, since the bats that arrived in the rainy season only contributed one new bat fly species at a low prevalence. Bat–bat fly ecological networks were less specialized in the rainy season compared with the dry–cold and dry–warm seasons because of the increase of host overlap among bat fly species during this season. This study suggests that seasonality promote: (1) differences in host species composition, and (2) a reduction in the specialization of host–parasite ecological networks.


2021 ◽  
Author(s):  
Adam Tomašových ◽  
Susan M. Kidwell

<p>Differences in the taxonomic or functional composition of living and death assemblages is a key means of identifying the magnitude and drivers of past ecological changes in conservation paleobiology, especially when assessing the effects of anthropogenic impacts. However, such live-dead differences in species abundances can arise not only from ecological (stochastic or deterministic) changes in abundance over the duration of time averaging but also from interspecific differences in the postmortem durability of skeletal remains or from the lifespan of the individuals. Here, we attempt to directly incorporate the effects of durability on species abundances in death assemblages by modeling dead abundance as a function of species’ durability traits and using abundances in living assemblages as a prior. Species inferred to be negatively affected by anthropogenic impacts should be over-represented in death assemblages relative to their abundance in death assemblages predicted by the durability model (rather than just relative to their abundance in living assemblages). Using species-level durability trait data for bivalves (shell size, thickness, mineralogy, shell organic content, and life habit) from the southern California shelf, we find that, among these traits, valve thickness correlates consistently positively and at multiple spatial scales with the log of the dead:live ratio of species abundances, and accounts for ~20-30% of live-dead mismatch. Using this benchmark for the discordance that might be taphonomic in origin, we confirm that the over-representation of epifaunal suspension-feeders and siphonate deposit-feeders in death assemblages of the southern California shelf owes in fact to their ecological decline in recent centuries, even when accounting for their greater durability.</p>


Sign in / Sign up

Export Citation Format

Share Document