Validating targets for antiparasite chemotherapy

Parasitology ◽  
1997 ◽  
Vol 114 (7) ◽  
pp. 31-44 ◽  
Author(s):  
C. C. WANG

The enzymes and receptors in parasites that can be qualified as targets for antiparasite chemotherapy should perform essential functions in the parasites and demonstrate some feasibility for selective inhibition. They can be tentatively identified through detailed analysis of various aspects of metabolisms in the parasites or elucidation of the mechanisms of action among proven antiparasitic agents. Preliminary verifications of these putative targets can be indicated by in vitro antiparasite activity of an inhibitor of the target. However, before a major long-term effort to pursue in-depth structure-activity analysis of the target is to be committed for specific inhibitor design, further validations of the target are essential to insure that future studies are not misguided. One old-fashioned approach to validate a target in the pharmaceutical industry is by correlating target inhibitions with antiparasitic activities among large numbers of drug derivatives. The results are often indicative but hardly ever conclusive. Another method is by comparing the putative drug targets between the drug-sensitive and the drug-resistant parasites for potential discrepancies. Unfortunately, the latter often result from indirect causes, such as reduced drug transport, instead of an alteration of the drug target itself. The third experimental approach is by disrupting the gene encoding the putative target in parasite, which can provide the most conclusive evidence on whether the target plays an indispensible role in the parasite. But special conditions are needed for the gene knockout mutants to survive to exhibit their phenotypes and to allow genetic complementation studies for further verifications. Furthermore, gene knockout experiments are often difficult to perform on cells of multiple ploidy or genes of multiple copies, and are currently applicable only to a limited number of protozoan parasites. In the current article I have tried to take a cursory look at some eleven putative drug targets among various parasites, each supported by well-established antiparasitic agents identified as its inhibitors. I have also considered the evidence for validity of each of them and the potential means of further verifying their validity.

2021 ◽  
Author(s):  
Catherine Margaret Moore ◽  
Jigang Wang ◽  
Qingsong Lin ◽  
Pedro Eduardo Ferreira ◽  
Mitchell A Avery ◽  
...  

Treatment failures with artemisinin combination therapies (ACTs) threaten global efforts to eradicate malaria. They highlight the importance of identifying drug targets and new inhibitors and of studying how existing antimalarial classes work. Herein we report the successful development of an heterologous expression-based compound screening tool. Validated drug target P. falciparum calcium ATPase6 (PfATP6) and a mammalian ortholog (SERCA1a) were functionally expressed in yeast providing a robust, sensitive, and specific screening tool. Whole-cell and in vitro assays consistently demonstrated inhibition and labelling of PfATP6 by artemisinins. Mutations in PfATP6 resulted in fitness costs that were ameliorated in the presence of artemisinin derivatives when studied in the yeast model. As previously hypothesised, PfATP6 is a target of artemisinins. Mammalian SERCA1a can be mutated to become more susceptible to artemisinins. The inexpensive, low technology yeast screening platform has identified unrelated classes of druggable PfATP6 inhibitors. Resistance to artemisinins may depend on mechanisms that can concomitantly address multi-targeting by artemisinins and fitness costs of mutations that reduce artemisinin susceptibility.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shuji Mizumoto ◽  
Moto Watanabe ◽  
Shuhei Yamada ◽  
Kazuyuki Sugahara

Chondroitin sulfate (CS) containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate), at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC) cells stably downregulated by the knockdown for the gene encodingN-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which is responsible for the formation of E-units in CS chains, were performed. Knockdown ofGalNAc4S-6STin LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferationin vitro. Furthermore, the stable downregulation ofGalNAc4S-6STexpression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Yangliu Xia ◽  
Ping Wang ◽  
Nana Yan ◽  
Frank J. Gonzalez ◽  
Tingting Yan

AbstractFulminant hepatitis (FH) is an incurable clinical syndrome where novel therapeutics are warranted. Withaferin A (WA), isolated from herb Withania Somnifera, is a hepatoprotective agent. Whether and how WA improves D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced FH is unknown. This study was to evaluate the hepatoprotective role and mechanism of WA in GalN/LPS-induced FH. To determine the preventive and therapeutic effects of WA, wild-type mice were dosed with WA 0.5 h before or 2 h after GalN treatment, followed by LPS 30 min later, and then killed 6 h after LPS treatment. To explore the mechanism of the protective effect, the macrophage scavenger clodronate, autophagy inhibitor 3-methyladenine, or gene knockout mouse lines NLR family pyrin domain containing 3 (Nlrp3)-null, nuclear factor-erythroid 2-related factor 2 (Nrf2)-null, liver-specific AMP-activated protein kinase (Ampk)a1 knockout (Ampka1ΔHep) and liver-specific inhibitor of KB kinase β (Ikkb) knockout (IkkbΔHep) mice were subjected to GalN/LPS-induced FH. In wild-type mice, WA potently prevented GalN/LPS-induced FH and inhibited hepatic NLRP3 inflammasome activation, and upregulated NRF2 and autophagy signaling. Studies with Nrf2-null, Ampka1ΔHep, and IkkbΔHep mice demonstrated that the hepatoprotective effect was independent of NRF2, hepatic AMPKα1, and IκκB. Similarly, 3-methyladenine cotreatment failed to abolish the hepatoprotective effect of WA. The hepatoprotective effect of WA against GalN/LPS-induced FH was abolished after macrophage depletion, and partially reduced in Nlrp3-null mice. Consistently, WA alleviated LPS-induced inflammation partially dependent on the presence of NLRP3 in primary macrophage in vitro. Notably, WA potently and therapeutically attenuated GalN/LPS-induced hepatotoxicity. In conclusion, WA improves GalN/LPS-induced hepatotoxicity by targeting macrophage partially dependent on NLRP3 antagonism, while largely independent of NRF2 signaling, autophagy induction, and hepatic AMPKα1 and IκκB. These results support the concept of treating FH by pharmacologically targeting macrophage and suggest that WA has the potential to be repurposed for clinically treating FH as an immunoregulator.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
C Tarirai ◽  
A Viljoen ◽  
P Chinyemba ◽  
A Khatib ◽  
P Jiyane ◽  
...  

2019 ◽  
Vol 484 (1) ◽  
pp. 117-120
Author(s):  
V. O. Murovets ◽  
E. A. Sozontov ◽  
T. G. Zachepilo

Protein T1R3, the main subunit of sweet, as well as amino acid, taste receptor, is expressed in the epithelium of the tongue and gastro intestinal tract, in β–cells of the pancreas, hypothalamus, and numerous other organs. Recently, convincing witnesses of T1R3 involvement in control of carbohydrate and lipid metabolism, and control of production of incretines and insulin, have been determined. In the study on Tas1r3-gene knockout mouse strain and parent strain C57Bl/6J as control, priority data concerning the effect of T1R3 on the morphological characteristics of Langerhans islets in the pancreas, are obtained. In Tas1r3 knockout animals, it is found that the size of the islets and their density in pancreatic tissue are reduced, as compared to the parent strain. Additionally, a decrease of expression of active caspase-3 in islets of gene-knockouts is demonstrated. The obtained data show that the lack of a functional, gene encoding sweet-taste receptor protein causes a dystrophy of the islet tissue and associates to the development of pathological changes in the pancreas specific to type-2 diabetes and obesity in humans.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2019 ◽  
Vol 18 (23) ◽  
pp. 2008-2021 ◽  
Author(s):  
Snigdha Singh ◽  
Neha Sharma ◽  
Charu Upadhyay ◽  
Sumit Kumar ◽  
Brijesh Rathi ◽  
...  

Malaria is a lethal disease causing devastating global impact by killing more than 8,00,000 individuals yearly. A noticeable decline in malaria related deaths can be attributed to the most reliable treatment, ACTs against P. falciparum. However, the cumulative resistance of the malaria parasite against ACTs is a global threat to control the disease and, therefore the new effective therapeutics are urgently needed, including new treatment approaches. Majority of the antimalarial drugs target BS malarial infection. Currently, scientists are eager to explore the drugs with potency against not only BS but other life stages such as sexual and asexual stages of the malaria parasite. Liver Stage is considered as one of the important drug targets as it always leads to BS and the infection can be cured at this stage before it enters into the Blood Stage. However, a limited number of compounds are reported effective against LS malaria infection probably due to scarcity of in vitro LS culture methods and clinical possibilities. This mini review covers a range of chemical compounds showing efficacy against BS and LS of the malaria parasite’s life cycle collectively (i.e. dual stage activity). These scaffolds targeting dual stages are essential for the eradication of malaria and to evade resistance.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


Sign in / Sign up

Export Citation Format

Share Document