Twentieth-century variations in temperature and precipitation in the Nordic Arctic

Polar Record ◽  
2002 ◽  
Vol 38 (206) ◽  
pp. 203-210 ◽  
Author(s):  
E. J. Førland ◽  
I. Hanssen-Bauer ◽  
T. Jónsson ◽  
C. Kern-Hansen ◽  
P.Ø. Nordli ◽  
...  

AbstractIn a joint Nordic effort, a high-quality climate data set for the Nordic Arctic is established. The data set consists of monthly values from 20 stations in Greenland, Iceland, the Faeroes, and the Norwegian Arctic. The data set is made available on the web. Ten climate elements are included, and most of the series covers the period 1890–2000. The data series illustrate the large climatic contrasts in the Nordic Arctic, and demonstrate that parts of the region have experienced substantial climate variations during the last century. Despite increasing temperatures during recent decades, the present temperature level is still lower than in the 1930s and 1950s in large parts of the region. The pattern of long-term precipitation variations is more complicated, but in parts of the region the annual precipitation has increased substantially. At Svalbard Airport and Bjørnøya the annual precipitation has increased by more than 2.5% per decade during the twentieth century.Variations in atmospheric circulation can account for most of the long-term positive trend in precipitation in the Norwegian Arctic, and also for the positive temperature trend from the 1960s. The positive temperature trend before 1930 and the negative trend during the following decades, are, however, not accounted for by the circulation models.

2021 ◽  
Author(s):  
Annette Dietmaier ◽  
Thomas Baumann

<p>The European Water Framework Directive (WFD) commits EU member states to achieve a good qualitative and quantitative status of all their water bodies.  WFD provides a list of actions to be taken to achieve the goal of good status.  However, this list disregards the specific conditions under which deep (> 400 m b.g.l.) groundwater aquifers form and exist.  In particular, deep groundwater fluid composition is influenced by interaction with the rock matrix and other geofluids, and may assume a bad status without anthropogenic influences. Thus, a new concept with directions of monitoring and modelling this specific kind of aquifers is needed. Their status evaluation must be based on the effects induced by their exploitation. Here, we analyze long-term real-life production data series to detect changes in the hydrochemical deep groundwater characteristics which might be triggered by balneological and geothermal exploitation. We aim to use these insights to design a set of criteria with which the status of deep groundwater aquifers can be quantitatively and qualitatively determined. Our analysis is based on a unique long-term hydrochemical data set, taken from 8 balneological and geothermal sites in the molasse basin of Lower Bavaria, Germany, and Upper Austria. It is focused on a predefined set of annual hydrochemical concentration values. The data range dates back to 1937. Our methods include developing threshold corridors, within which a good status can be assumed, and developing cluster analyses, correlation, and piper diagram analyses. We observed strong fluctuations in the hydrochemical characteristics of the molasse basin deep groundwater during the last decades. Special interest is put on fluctuations that seem to have a clear start and end date, and to be correlated with other exploitation activities in the region. For example, during the period between 1990 and 2020, bicarbonate and sodium values displayed a clear increase, followed by a distinct dip to below-average values and a subsequent return to average values at site F. During the same time, these values showed striking irregularities at site B. Furthermore, we observed fluctuations in several locations, which come close to disqualifying quality thresholds, commonly used in German balneology. Our preliminary results prove the importance of using long-term (multiple decades) time series analysis to better inform quality and quantity assessments for deep groundwater bodies: most fluctuations would stay undetected within a < 5 year time series window, but become a distinct irregularity when viewed in the context of multiple decades. In the next steps, a quality assessment matrix and threshold corridors will be developed, which take into account methods to identify these fluctuations. This will ultimately aid in assessing the sustainability of deep groundwater exploitation and reservoir management for balneological and geothermal uses.</p>


2017 ◽  
Author(s):  
Florian Berkes ◽  
Patrick Neis ◽  
Martin G. Schultz ◽  
Ulrich Bundke ◽  
Susanne Rohs ◽  
...  

Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in-situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System, www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS) for the period 1995 to 2012 in different geographical regions and vertical layers of the UTLS. The largest amount of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium Range Weather Forecast (ECMWF) ERA-Interim reanalysis, where a significant (95 % confidence) temperature increase of +0.56 K/decade is obtained. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature bias between observation and model data over the studied period. This study demonstrates the value of the IAGOS temperature observations as anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


2018 ◽  
Vol 44 ◽  
pp. 00083 ◽  
Author(s):  
Leszek Kuchar ◽  
Slawomir Iwanski

In this paper a new validation test for the spatial weather generator SWGEN producing the multisite daily time series of solar radiation, temperature and precipitation is presented. The method was tested by comparing statistics of 1000 years of generated data with extra long series of 35 years of observed weather parameters and 24 sites of meteorological stations for south-west Poland. The method evaluation showed that the means (sums) and variances of generated data were comparable with observed climatic data aggregated for months, seasons and years.


2020 ◽  
Author(s):  
Danilo Rabino ◽  
Marcella Biddoccu ◽  
Giorgia Bagagiolo ◽  
Guido Nigrelli ◽  
Luca Mercalli ◽  
...  

<p>Historical weather data represent an extremely precious resource for agro-meteorology for studying evolutionary dynamics and for predictive purposes, to address agronomical and management choices, that have economic, social and environmental effect. The study of climatic variability and its consequences starts from the observation of variations over time and the identification of the causes, on the basis of historical series of meteorological observations. The availability of long-lasting, complete and accurate datasets is a fundamental requirement to predict and react to climate variability. Inter-annual climate changes deeply affect grapevine productive cycle determining direct impact on the onset and duration of phenological stages and, ultimately, on the grape harvest and yield. Indeed, climate variables, such as air temperature and precipitation, affect evapotranspiration rates, plant water requirements, and also the vine physiology. In this respect, the observed increase in the number of warm days poses a threat to grape quality as it creates a situation of imbalance at maturity, with respect to sugar content, acidity and phenolic and aromatic ripeness.</p><p>A study was conducted to investigate the relationships between climate variables and harvest onset dates to assess the responses of grapevine under a global warming scenario. The study was carried out in the “Monferrato” area, a rainfed hillslope vine-growing area of NW Italy. In particular, the onset dates of harvest of different local wine grape varieties grown in the Vezzolano Experimental Farm (CNR-IMAMOTER) and in surrounding vineyards (affiliated to the Terre dei Santi Cellars) were recorded from 1962 to 2019 and then related to historical series of climate data by means of regression analysis. The linear regression was performed based on the averages of maximum and minimum daily temperatures and sum of precipitation (1962–2019) calculated for growing and ripening season, together with a bioclimatic heat index for vineyards, the Huglin index. The climate data were obtained from two data series collected in the Experimental farm by a mechanical weather station (1962-2002) and a second series recorded (2002-2019) by an electro-mechanical station included in Piedmont Regional Agro-meteorological Network. Finally, a third long-term continuous series covering the period from 1962 to 2019, provided by Italian Meteorological Society was considered in the analysis.</p><p>The results of the study highlighted that inter-annual climate variability, with a general positive trend of temperature, significantly affects the ripening of grapes with a progressive anticipation of the harvest onset dates. In particular, all the considered variables excepted precipitation, resulted negatively correlated with the harvest onset date reaching a high level of significance (up to P< 0.001). Best results have been obtained for maximum temperature and Huglin index, especially by using the most complete dataset. The change ratios obtained using datasets including last 15 years were greater (in absolute terms) than results limited to the period 1962-2002, and also correlations have greater level of significance. The results indicated clearly the relationships between the temperature trend and the gradual anticipation of harvest and the importance of having long and continuous historical weather data series available.</p>


2013 ◽  
Vol 26 (12) ◽  
pp. 4168-4185 ◽  
Author(s):  
Sanjiv Kumar ◽  
Venkatesh Merwade ◽  
James L. Kinter ◽  
Dev Niyogi

Abstract The authors have analyzed twentieth-century temperature and precipitation trends and long-term persistence from 19 climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This study is focused on continental areas (60°S–60°N) during 1930–2004 to ensure higher reliability in the observations. A nonparametric trend detection method is employed, and long-term persistence is quantified using the Hurst coefficient, taken from the hydrology literature. The authors found that the multimodel ensemble–mean global land–average temperature trend (0.07°C decade−1) captures the corresponding observed trend well (0.08°C decade−1). Globally, precipitation trends are distributed (spatially) at about zero in both the models and in the observations. There are large uncertainties in the simulation of regional-/local-scale temperature and precipitation trends. The models’ relative performances are different for temperature and precipitation trends. The models capture the long-term persistence in temperature reasonably well. The areal coverage of observed long-term persistence in precipitation is 60% less (32% of land area) than that of temperature (78%). The models have limited capability to capture the long-term persistence in precipitation. Most climate models underestimate the spatial variability in temperature trends. The multimodel ensemble–average trend generally provides a conservative estimate of local/regional trends. The results of this study are generally not biased by the choice of observation datasets used, including Climatic Research Unit Time Series 3.1; temperature data from Hadley Centre/Climatic Research Unit, version 4; and precipitation data from Global Historical Climatology Network, version 2.


2021 ◽  
Author(s):  
Ole Einar Tveito

<p>For many purposes, including the estimation of climate normals, requires long, continuous  and preferably homogeneous time series. Many observation series do not meet these requirements, especially due to modernisation and automation of the observation network. Despite the lack of long series there is still a need to provide climate parameters representing a longer time period than available. An actual problem is the calculation of new standard climate normals for the 1991-2020 period, where normal values need to be assigned also for observation series not meeting the requirements of WMO to estimate climate normals from observations. </p><p>One possible approach to estimate monthly time series is to extract value from gridded climate anomaly fields. In this study this approach is applied to complete time series that will be the basis for calculation of long term reference values.</p><p>The calculation of the long term time series is a two step procedure. First monthly anomaly grids based on homogenised data series are produced. The homogenized series provide more stable and reliable spatial estimates than applying non homogenised data. The homogenised data set is also complete ensuring a spatially consistent input throughout the analysis period 1991-2020.</p><p>The monthly anomalies for the location of the series to be complete are extracted from the gridded fields. By combining the interpolated anomalies with the observations the long term mean value can be estimated. The study shows that this approach provides reliable estimates of long term values, even with just a few events for calibration. The precision of the estimates depend more on the representativity of the grid estimates than length of the observation series. At locations where the anomaly grids represent the spatial climate variability well, stable estimates are achieved. On the other hand will the estimates at locations where the anomaly grids are less accurate due to sparse data coverage or steep climate gradients lead to estimates with a larger variability, and  thus more uncertain estimates. </p>


2019 ◽  
Author(s):  
Tomasz Wawrzyniak ◽  
Marzena Osuch

Abstract. The article presents the climatological dataset from the Polish Polar Station Hornsund located in the SW part of Spitsbergen - the biggest island of the Svalbard Archipelago. Due to a general lack of long-term in situ measurements and observations, the high Arctic remains one of the largest climate‐data deficient regions on the Earth, so described series is of unique value. To draw conclusions on the climatic changes in the Arctic, it is necessary to analyse the long-term series of continuous, systematic, in situ observations from different locations and comparing the corresponding data, rather than rely on the climatic simulations only. In recent decades, rapid environmental changes occurring in the Atlantic sector of the Arctic are reflected in the data series collected by the operational monitoring conducted at the Hornsund Station. We demonstrate the results of the 40 years-long series of observations. Climatological mean values or totals are given, and we also examined the variability of meteorological variables at monthly and annual scale using the modified Mann-Kendall test for trend and Sen’s method. The relevant daily, monthly, and annual data are provided on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.909042, Wawrzyniak and Osuch, 2019).


2021 ◽  
Vol 2069 (1) ◽  
pp. 012015
Author(s):  
Lin Wang ◽  
Maurice Defo ◽  
Abhishek Gaur ◽  
Michael A Lacasse

Abstract A moisture reference year (MRY) is generally used to assess the durability, or long-term performance of building envelopes within a long climatological time period, e.g. a 31 year timeframe. The intent of this paper is to develop a set of moisture reference years that can be used to assess risk to the formation of mould growth in wood-frame buildings over the long-term. The set of moisture reference years have been developed based on 15 realizations of 31-year climate data. Replicated Latin Hypercube Sampling is applied to select 15 sub-realizations with 7 representative years having different levels of moisture index (MI) from each realization. Thereafter, hygrothermal simulations are performed for a brick veneer clad wood-frame wall assembly using the 15 sub-realizations; that sub-realization which produces the highest value of maximum mould growth index over 7-year period is selected as the MRY. The selection process is then implemented for all 15 realizations of the 31-years of data sets, from which 15 sets of 7-year long MRYs are selected to represent the original 15 realizations. It is shown that the 15 sets of 7-year long MRYs can produce the same value of maximum mould growth index as well as the uncertainty as compared to the original 15 realizations having a 31-year climate data set.


Sign in / Sign up

Export Citation Format

Share Document