Amygdala–hippocampal shape and cortical thickness abnormalities in first-episode schizophrenia and mania

2012 ◽  
Vol 43 (7) ◽  
pp. 1353-1363 ◽  
Author(s):  
A. Qiu ◽  
S. C. Gan ◽  
Y. Wang ◽  
K. Sim

BackgroundAbnormalities in cortical thickness and subcortical structures have been studied in schizophrenia but little is known about corresponding changes in mania and brain structural differences between these two psychiatric conditions, especially early in the stage of the illness. In this study we aimed to compare cortical thickness and shape of the amygdala–hippocampal complex in first-episode schizophrenia (FES) and mania (FEM).MethodStructural magnetic resonance imaging (MRI) was performed on 28 FES patients, 28 FEM patients and 28 healthy control subjects who were matched for age, gender and handedness.ResultsOverall, the shape of the amygdala was deformed in both patient groups, relative to controls. Compared to FEM patients, FES patients had significant inward shape deformation in the left hippocampal tail, right hippocampal body and a small region in the right amygdala. Cortical thinning was more widespread in FES patients, with significant differences found in the temporal brain regions when compared with FEM and controls.ConclusionsSignificant differences were observed between the two groups of patients with FES and FEM in terms of the hippocampal shape and cortical thickness in the temporal region, highlighting that distinguishable brain structural changes are present early in the course of schizophrenia and mania.

2011 ◽  
Vol 26 (S2) ◽  
pp. 932-932
Author(s):  
Y. Kawasaki ◽  
M. Suzuki ◽  
T. Takahashi ◽  
K. Nakamura

BackgroundAlthough longitudinal magnetic resonance imaging (MRI) studies have shown that various brain regions undergo progressive tissue loss during the early phases of schizophrenia, regional pattern of these changes remain unclear.MethodsLongitudinal MRI data were obtained from 18 (12 males and 6 females) patients with first-episode schizophrenia and 20 (11 males and 9 females) healthy controls and at baseline and follow-up with mean scan interval of 2.7 years. To compare gray matter changes over time between patients and controls were evaluated with voxel-based morphometry (VBM) using SPM8 following the longitudinal DARTEL protocol.ResultsIn both groups of patient and control longitudinal gray mater reduction was observed in various brain regions including lateral and medial frontal regions and superior temporal region. Excessive decrease in gray matter was found in patients as compared to healthy controls in the left superior temporal region and right inferior frontal region.DiscussionOur findings suggest that there are differing longitudinal gray matter changes in patients with schizophrenia during the early phases of the illness as compared to healthy individuals.


2021 ◽  
Author(s):  
Qijie Kuang ◽  
Yi Liu ◽  
Sumiao Zhou ◽  
Taiyong Bi ◽  
Lin Mi ◽  
...  

Abstract Our aim was to analyse the correlation between the fractional amplitude of low-frequency fluctuation (fALFF) and facial emotion recognition (FER) ability in patients with first-episode schizophrenia (FSZ). A total of 28 patients with FSZ and 33 healthy controls (HCs) completed visual search tasks for FER ability. Regions of interest (ROIs) related to facial emotion were obtained from a previous meta-analysis. Pearson correlation analysis was performed to understand the correlation between fALFF and FER ability. Our results indicated that the patients performed worse than the HCs in the accuracy performances of happy FER and fearful FER. The previous meta-analysis results showed that the brain regions related to FER included the bilateral amygdala (AMY)/hippocampus (HIP), right fusiform gyrus (FFG), and right supplementary motor area (SMA). Pearson correlation showed that the fALFF of the right FFG was associated with high-load fearful FER accuracy (r = -0.43, p = 0.022). Multiple regression analysis showed that the fALFF of the right FFG was an independent contributor to fearful FER accuracy. Our study indicates that FER ability is correlated with resting-state intrinsic activity in brain regions related to facial emotion, which may provide a reference for the study of FER in schizophrenia.


2004 ◽  
Vol 184 (5) ◽  
pp. 409-415 ◽  
Author(s):  
J. Eric Jensen ◽  
Jodi Miller ◽  
Peter C. Williamson ◽  
Richard W J. Neufeld ◽  
Ravi S. Menon ◽  
...  

BackgroundMembrane phospholipid and high-energy abnormalities measured with phosphorus magnetic resonance spectroscopy (31P-MRS) have been reported in patients with schizophrenia in several brain regions.AimsUsing improved imaging techniques, previously inaccessible brain regions were examined in patients with first-episode schizophrenia and healthy volunteers with 4.0 T 31P-MRS.MethodBrain spectra were collected in vivo from 15 patients with first-episode schizophrenia and 15 healthy volunteers from 15 cm3 effective voxels in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex and parieto-occipital cortex.ResultsPeople with first-episode schizophrenia showed increased levels of glycerophosphocholine in the anterior cingulate. Inorganic phosphate, phosphocreatine and adenosine triphosphate concentrations were also increased in the anterior cingulate in this group.ConclusionsThe increased phosphodiester and high-energy phosphate levels in the anterior cingulate of brains of people with first-episode schizophrenia may indicate neural overactivity in this region during the early stages of the illness, resulting in increased excitotoxic neural membrane breakdown.


2008 ◽  
Vol 102 (1-3) ◽  
pp. 5
Author(s):  
Philip R. Szeszko ◽  
Catherine L. Narr ◽  
Owen R. Phillips ◽  
Joanne McCormack ◽  
Serge Sevy ◽  
...  

2016 ◽  
Vol 46 (10) ◽  
pp. 2145-2155 ◽  
Author(s):  
L. Haring ◽  
A. Müürsepp ◽  
R. Mõttus ◽  
P. Ilves ◽  
K. Koch ◽  
...  

BackgroundIn studies using magnetic resonance imaging (MRI), some have reported specific brain structure–function relationships among first-episode psychosis (FEP) patients, but findings are inconsistent. We aimed to localize the brain regions where cortical thickness (CTh) and surface area (cortical area; CA) relate to neurocognition, by performing an MRI on participants and measuring their neurocognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB), in order to investigate any significant differences between FEP patients and control subjects (CS).MethodExploration of potential correlations between specific cognitive functions and brain structure was performed using CANTAB computer-based neurocognitive testing and a vertex-by-vertex whole-brain MRI analysis of 63 FEP patients and 30 CS.ResultsSignificant correlations were found between cortical parameters in the frontal, temporal, cingular and occipital brain regions and performance in set-shifting, working memory manipulation, strategy usage and sustained attention tests. These correlations were significantly dissimilar between FEP patients and CS.ConclusionsSignificant correlations between CTh and CA with neurocognitive performance were localized in brain areas known to be involved in cognition. The results also suggested a disrupted structure–function relationship in FEP patients compared with CS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woo-Sung Kim ◽  
Guangfan Shen ◽  
Congcong Liu ◽  
Nam-In Kang ◽  
Keon-Hak Lee ◽  
...  

Abstract Altered resting-state functional connectivity (FC) of the amygdala (AMY) has been demonstrated to be implicated in schizophrenia (SZ) and attenuated psychosis syndrome (APS). Specifically, no prior work has investigated FC in individuals with APS using subregions of the AMY as seed regions of interest. The present study examined AMY subregion-based FC in individuals with APS and first-episode schizophrenia (FES) and healthy controls (HCs). The resting state FC maps of the three AMY subregions were computed and compared across the three groups. Correlation analysis was also performed to examine the relationship between the Z-values of regions showing significant group differences and symptom rating scores. Individuals with APS showed hyperconnectivity between the right centromedial AMY (CMA) and left frontal pole cortex (FPC) and between the laterobasal AMY and brain stem and right inferior lateral occipital cortex compared to HCs. Patients with FES showed hyperconnectivity between the right superficial AMY and left occipital pole cortex and between the left CMA and left thalamus compared to the APS and HCs respectively. A negative relationship was observed between the connectivity strength of the CMA with the FPC and negative-others score of the Brief Core Schema Scales in the APS group. We observed different altered FC with subregions of the AMY in individuals with APS and FES compared to HCs. These results shed light on the pathogenetic mechanisms underpinning the development of APS and SZ.


2015 ◽  
Vol 168 (1-2) ◽  
pp. 353-359 ◽  
Author(s):  
Yan Zhang ◽  
Junjie Zheng ◽  
Xiaoduo Fan ◽  
Xiaofeng Guo ◽  
Wenbin Guo ◽  
...  

2013 ◽  
Vol 151 (1-3) ◽  
pp. 259-264 ◽  
Author(s):  
Emma Sprooten ◽  
Martina Papmeyer ◽  
Annya M. Smyth ◽  
Daniel Vincenz ◽  
Sibylle Honold ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document