White matter endophenotype candidates for ADHD: a diffusion imaging tractography study with sibling design

2019 ◽  
Vol 50 (7) ◽  
pp. 1203-1213 ◽  
Author(s):  
Huey-Ling Chiang ◽  
Yung-Chin Hsu ◽  
Chi-Yuan Shang ◽  
Wen-Yih Isaac Tseng ◽  
Susan Shur-Fen Gau

AbstractBackgroundBrain structural alterations are frequently observed in probands with attention-deficit/hyperactivity disorder (ADHD). Here we examined the microstructural integrity of 76 white matter tracts among unaffected siblings of patients with ADHD to evaluate the potential familial risk and its association with clinical and neuropsychological manifestations.MethodsThe comparison groups included medication-naïve ADHD probands (n = 50), their unaffected siblings (n = 50) and typically developing controls (n = 50, age-and-sex matched with ADHD probands). Whole brain tractography was reconstructed automatically by tract-based analysis of diffusion spectrum imaging (DSI). Microstructural properties of white matter tracts were represented by the values of generalized fractional anisotropy (GFA), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD).ResultsCompared to the control group, ADHD probands showed higher AD values in the perpendicular fasciculus, superior longitudinal fasciculus I, corticospinal tract, and corpus callosum. The AD values of unaffected siblings were in the intermediate position between those of the ADHD and control groups. These AD values were significantly associated with ADHD symptoms, sustained attention and working memory, for all white matter tracks evaluated except for the perpendicular fasciculus. Higher FA and lower RD values in the right frontostriatal tract connecting ventrolateral prefrontal cortex (FS-VLPFC) were associated with better performance in spatial span only in the unaffected sibling group.ConclusionsAbnormal AD values of specific white matter tracts among unaffected siblings of ADHD probands suggest the presence of familial risk in this population. The right FS-VLPFC may have a role in preventing the expression of the ADHD-related behavioral phenotype.ClinicalTrials.gov numberNCT01682915

Author(s):  
Talaat A. Hassan ◽  
Shaima Fattouh Elkholy ◽  
Bahaa Eldin Mahmoud ◽  
Mona ElSherbiny

Abstract Background Multiple sclerosis is one of the commonest causes of neurological disability in middle-aged and young adults. Depression in MS patients can compromise cognitive functions, lead to suicide attempts, impair relationships and reduce compliance with disease-modifying treatments. The aim of this study was to investigate and compare the microstructural changes in the white matter tracts of the limbic system in MS patients with and those without depressive manifestations using a diffusion tensor imaging (DTI) technique. Methods This study included 40 patients who were divided into three groups. Group 1 comprised of 20 patients with relapsing-remitting MS with depressive symptoms and group 2 comprised 10 MS patients without symptoms of depression. The third group is a control group that included 10 age-matched healthy individuals. All patients underwent conventional MRI examinations and DTI to compare the fractional anisotropy (FA) values in the white matter tracts of the limbic system. Results We compared the DTI findings in MS patients with and those without depressive symptoms. It was found that patients with depression and MS exhibited a significant reduction in the FA values of the cingulum (P < 0.0111 on the right and P < 0.0142 on the left), uncinate fasciculus (P < 0.0001 on the right and P < 0.0076 on the left) and the fornix (P < 0.0001 on both sides). No significant difference was found between the FA values of the anterior thalamic radiations in both groups. Conclusion Patients with depression and MS showed more pronounced microstructural damage in the major white matter connections of the limbic pathway, namely, the uncinate fasciculus, cingulum and fornix. These changes can be detected by DTI as decreased FA values in depressed MS patients compared to those in non-depressed patients.


2018 ◽  
Author(s):  
Farshid Sepehrband ◽  
Ryan P Cabeen ◽  
Jeiran Choupan ◽  
Giuseppe Barisano ◽  
Meng Law ◽  
...  

AbstractDiffusion tensor imaging (DTI) has been extensively used to map changes in brain tissue related to neurological disorders. Among the most widespread DTI findings are increased mean diffusivity and decreased fractional anisotropy of white matter tissue in neurodegenerative diseases. Here we utilize multi-shell diffusion imaging to separate diffusion signal of the brain parenchyma from fluid within the white matter. We show that unincorporated anisotropic water in perivascular space (PVS) significantly, and systematically, biases DTI measures, casting new light on the biological validity of many previously reported findings. Despite the challenge this poses for interpreting these past findings, our results suggest that multi-shell diffusion MRI provides a new opportunity for incorporating the PVS contribution, ultimately strengthening the clinical and scientific value of diffusion MRI.HighlightsPerivascular space (PVS) fluid significantly contributes to diffusion tensor imaging metricsIncreased PVS fluid results in increased mean diffusivity and decreased fractional anisotropyPVS contribution to diffusion signal is overlooked and demands further investigation


2016 ◽  
Author(s):  
Lee B Reid ◽  
Martin V Sale ◽  
Ross Cunnington ◽  
Jason B Mattingley ◽  
Stephen E Rose

AbstractWe have reported reliable changes in behaviour, brain structure and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 mins daily, over four weeks. Here we extend these findings by employing diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group p<0.01 FWE) and widespread microstructural changes were detected across the motor system of the ‘trained’ hemisphere. Specifically, region-of-interest based analyses of diffusion MRI (n=21) revealed significantly increased fractional anisotropy in the right caudate nucleus (4.9%; p<0.05 FWE), and decreased mean diffusivity in the left nucleus accumbens (-1.3%; p<0.05 FWE). Diffusion MRI tractography (n=22), seeded by sensorimotor cortex fMRI activation, also revealed increased fractional anisotropy in the right corticomotor tract (mean 3.28%; p<0.05 FWE) predominantly reflecting decreased radial diffusivity. These changes were consistent throughout the entire length of the tract. The left corticomotor tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; p<0.05 FWE) and right supplementary motor area (18/22 participants; p<0.05 FWE). Equivalent changes in FA were not seen in the left (‘non-trained’) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training.


2018 ◽  
Vol 11 ◽  
pp. 1178623X1879992 ◽  
Author(s):  
Vikas Pareek ◽  
VP Subramanyam Rallabandi ◽  
Prasun K Roy

We investigate the relationship between Gray matter’s volume vis-a-vis White matter’s integrity indices, such Axial diffusivity, Radial diffusivity, Mean diffusivity, and Fractional anisotropy, in individuals undergoing healthy aging. We investigated MRI scans of 177 adults across 20 to 85 years. We used Voxel-based morphometry, and FDT-FSL analysis for estimation of Gray matter volume and White matter’s diffusion indices respectively. Across the life span, we observed an inter-relationship between the Gray matter and White matter, namely that both Axial diffusivity and Mean Diffusivity show strong correlation with Gray matter volume, along the aging process. Furthermore, across all ages the Fractional anisotropy and Mean diffusivity are found to be significantly reduced in females when compared to males, but there are no significant gender differences in Axial Diffusivity and Radial diffusivity. We conclude that for both genders across all ages, the Gray matter’s Volume is strongly correlated with White matter’s Axial Diffusivity and Mean Diffusivity, while being weakly correlated with Fractional Anisotropy. Our study clarifies the multi-scale relationship in brain tissue, by elucidating how the White matter’s micro-structural parameters influences the Gray matter’s macro-structural characteristics, during healthy aging across the life-span.


2018 ◽  
Vol 115 (48) ◽  
pp. 12289-12294 ◽  
Author(s):  
Hiroki Oishi ◽  
Hiromasa Takemura ◽  
Shuntaro C. Aoki ◽  
Ichiro Fujita ◽  
Kaoru Amano

Stereopsis is a fundamental visual function that has been studied extensively. However, it is not clear why depth discrimination (stereoacuity) varies more significantly among people than other modalities. Previous studies have reported the involvement of both dorsal and ventral visual areas in stereopsis, implying that not only neural computations in cortical areas but also the anatomical properties of white matter tracts connecting those areas can impact stereopsis. Here, we studied how human stereoacuity relates to white matter properties by combining psychophysics, diffusion MRI (dMRI), and quantitative MRI (qMRI). We performed a psychophysical experiment to measure stereoacuity and, in the same participants, we analyzed the microstructural properties of visual white matter tracts on the basis of two independent measurements, dMRI (fractional anisotropy, FA) and qMRI (macromolecular tissue volume; MTV). Microstructural properties along the right vertical occipital fasciculus (VOF), a major tract connecting dorsal and ventral visual areas, were highly correlated with measures of stereoacuity. This result was consistent for both FA and MTV, suggesting that the behavioral–structural relationship reflects differences in neural tissue density, rather than differences in the morphological configuration of fibers. fMRI confirmed that binocular disparity stimuli activated the dorsal and ventral visual regions near VOF endpoints. No other occipital tracts explained the variance in stereoacuity. In addition, the VOF properties were not associated with differences in performance on a different psychophysical task (contrast detection). These series of experiments suggest that stereoscopic depth discrimination performance is, at least in part, constrained by dorso-ventral communication through the VOF.


Neurology ◽  
2018 ◽  
Vol 92 (1) ◽  
pp. e30-e39 ◽  
Author(s):  
Meher R. Juttukonda ◽  
Giulia Franco ◽  
Dario J. Englot ◽  
Ya-Chen Lin ◽  
Kalen J. Petersen ◽  
...  

ObjectiveTo assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment.MethodsSedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions.ResultsFractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body (p < 0.01), sagittal stratum (p = 0.01), forceps major (p = 0.02), pontine crossing tract (p = 0.03), and retrolenticular internal capsule (p = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle (p < 0.01), middle cerebellar peduncle (p = 0.05), and inferior cerebellar peduncle (p = 0.05).ConclusionsRegionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.


2016 ◽  
Vol 46 (6) ◽  
pp. 1225-1238 ◽  
Author(s):  
H.-L. Chiang ◽  
Y.-J. Chen ◽  
C.-Y. Shang ◽  
W.-Y. I. Tseng ◽  
S. S.-F. Gau

BackgroundThe relationship between white-matter tracts and executive functions (EF) in attention deficit hyperactivity disorder (ADHD) has not been well studied and previous studies mainly focused on frontostriatal (FS) tracts. The authors explored the microstructural property of several fibre tracts hypothesized to be involved in EF, to correlate their microstructural property with EF, and to explore whether such associations differ between ADHD and typically developing (TD) youths.MethodWe assessed 45 youths with ADHD and 45 individually matched TD youths with a computerized test battery for multiple dimensions of EF. From magnetic resonance imaging, FS tract, superior longitudinal fasciculus (SLF), arcuate fasciculus (AF) and cingulum bundle (CB) were reconstructed by diffusion spectrum imaging tractography. The generalized fractional anisotropy (GFA) values of white-matter tracts were computed to present microstructural property of each tract.ResultsWe found lower GFA in the left FS tract, left SLF, left AF and right CB, and poorer performance in set-shifting, sustained attention, cognitive inhibition and visuospatial planning in ADHD than TD. The ADHD and TD groups demonstrated different association patterns between EF and fibre tract microstructural property. Most of the EF were associated with microstructural integrity of the FS tract and CB in TD youths, while with that of the FS tract, SLF and AF in youths with ADHD.ConclusionsOur findings support that the SLF, AF and CB also involve in a wide range of EF and that the main fibre tracts involved in EF are different in youths with ADHD.


2018 ◽  
Vol 32 (1) ◽  
pp. 10-16
Author(s):  
Alexander Rau ◽  
Elias Kellner ◽  
Niels A Foit ◽  
Niklas Lützen ◽  
Dieter H Heiland ◽  
...  

The aim of this study was to evaluate whether ganglioglioma (GGL), dysembryoplastic neuroepithelial tumour (DNET) and FCD (focal cortical dysplasia) are distinguishable through diffusion tensor imaging. Additionally, it was investigated whether the diffusion measures differed in the perilesional (pNAWM) and in the contralateral normal appearing white matter (cNAWM). Six GGLs, eight DNETs and seven FCDs were included in this study. Quantitative diffusion measures, that is, axial, radial and mean diffusivity and fractional anisotropy, were determined in the lesion identified on isotropic T2 or FLAIR-weighted images and in pNAWM and cNAWM, respectively. DNET differed from FCD in mean diffusivity, and GGL from FCD in radial diffusivity. Both types of glioneuronal tumours were different from pNAWM in fractional anisotropy and radial diffusivity. For identifying the tumour edges, threshold values for tumour-free tissue were investigated with receiver operating characteristic analyses: tumour could be separated from pNAWM at a threshold ≤ 0.32 (fractional anisotropy) or ≥ 0.56 (radial diffusivity) *10–3 mm2/s (area under the curve 0.995 and 0.990 respectively). While diffusion parameters of FCDs differed from cNAWM (radial diffusivity (*10–3 mm/s2): 0.74 ± 0.19 vs. 0.43 ± 0.05; corrected p-value < 0.001), the pNAWM could not be differentiated from the FCD.


2003 ◽  
Vol 182 (5) ◽  
pp. 439-443 ◽  
Author(s):  
J. Burns ◽  
D. Job ◽  
M. E. Bastin ◽  
H. Whalley ◽  
T. Macgillivray ◽  
...  

BackgroundThere is growing evidence that schizophrenia is a disorder of cortical connectivity Specifically, frontotemporal and frontoparietal connections are thought to be functionally impaired. Diffusion tensor magnetic resonance imaging (DT–MRI) is a technique that has the potential to demonstrate structural disconnectivity in schizophrenia.AimsTo investigate the structural integrity of frontotemporal and frontoparietal white matter tracts in schizophrenia.MethodThirty patients with DSM–IV schizophrenia and thirty matched control subjects underwent DT–MRI and structural MRI. Fractional anisotropy – an index of the integrity of white matter tracts – was determined in the uncinate fasciculus, the anterior cingulum and the arcuate fasciculus and analysed using voxel-based morphometry.ResultsThere was reduced fractional anisotropy in the left uncinate fasciculus and left arcuate fasciculus in patients with schizophrenia compared with controls.ConclusionsThe findings of reduced white matter tract integrity in the left uncinate fasciculus and left arcuate fasciculus suggest that there is frontotemporal and frontoparietal structural disconnectivity in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document