Altered activation and functional connectivity in individuals with social anhedonia when envisioning positive future episodes

2021 ◽  
pp. 1-9
Author(s):  
Zhuo-ya Yang ◽  
Rui-ting Zhang ◽  
Yong-ming Wang ◽  
Jia Huang ◽  
Han-yu Zhou ◽  
...  

Abstract Background Anticipatory pleasure deficits are closely correlated with negative symptoms in schizophrenia, and may be found in both clinical and subclinical populations along the psychosis continuum. Prospection, which is an important component of anticipatory pleasure, is impaired in individuals with social anhedonia (SocAnh). In this study, we examined the neural correlates of envisioning positive future events in individuals with SocAnh. Methods Forty-nine individuals with SocAnh and 33 matched controls were recruited to undergo functional MRI scanning, during which they were instructed to simulate positive or neutral future episodes according to cue words. Two stages of prospection were distinguished: construction and elaboration. Results Reduced activation at the caudate and the precuneus when prospecting positive (v. neutral) future events was observed in individuals with SocAnh. Furthermore, compared with controls, increased functional connectivity between the caudate and the inferior occipital gyrus during positive (v. neutral) prospection was found in individuals with SocAnh. Both groups exhibited a similar pattern of brain activation for the construction v. elaboration contrast, regardless of the emotional context. Conclusions Our results provide further evidence on the neural mechanism of anticipatory pleasure deficits in subclinical individuals with SocAnh and suggest that altered cortico-striatal circuit may play a role in anticipatory pleasure deficits in these individuals.

2019 ◽  
Author(s):  
David Chester ◽  
Sarah Beth Bell ◽  
C. Nathan DeWall ◽  
Samuel James West ◽  
Marisabel Romero-Lopez ◽  
...  

People often have to make decisions between immediate rewards and more long-term goals. Such intertemporal judgments are often investigated in the context of monetary choice or drug use, yet not in regards to aggressive behavior. We combined a novel intertemporal aggression paradigm with functional neuroimaging to examine the role of temporal delay in aggressive behavior and the neural correlates thereof. Sixty-one participants (aged 18-22; 37 females) exhibited substantial variability in the extent to which they selected immediate acts of lesser aggression versus delayed acts of greater aggression against a same-sex opponent. Choosing delayed-yet-more-severe aggression was increased by provocation and associated with greater self-control. Preferences for delayed aggression were associated with greater activity in the ventromedial prefrontal cortex (VMPFC) during such choices, and reduced functional connectivity between the VMPFC and brain regions implicated in motor impulsivity. Preferences for immediate aggression were associated with reduced functional connectivity between the VMPFC and the frontoparietal control network. Dispositionally-aggressive participants exhibited reduced VMPFC activity, which partially explained and suppressed their preferences for delayed aggression. Blunted VMPFC activity may thus be a neural mechanism that promotes reactive aggression towards provocateurs among dispositionally-aggressive individuals. These findings demonstrate the utility of an intertemporal framework for investigating aggression and provide further evidence for the similar underlying neurobiology between aggression and other rewarding behaviors.


2021 ◽  
Vol 43 (2) ◽  
pp. 618-636
Author(s):  
Zoran Madzarac ◽  
Lucija Tudor ◽  
Marina Sagud ◽  
Gordana Nedic Erjavec ◽  
Alma Mihaljevic Peles ◽  
...  

Negative symptoms of schizophrenia, including anhedonia, represent a heavy burden on patients and their relatives. These symptoms are associated with cortical hypodopamynergia and impaired striatal dopamine release in response to reward stimuli. Catechol-O-methyltransferase (COMT) and monoamine oxidase type B (MAO-B) degrade dopamine and affect its neurotransmission. The study determined the association between COMT rs4680 and rs4818, MAO-B rs1799836 and rs6651806 polymorphisms, the severity of negative symptoms, and physical and social anhedonia in schizophrenia. Sex-dependent associations were detected in a research sample of 302 patients with schizophrenia. In female patients with schizophrenia, the presence of the G allele or GG genotype of COMT rs4680 and rs4818, as well as GG haplotype rs4818-rs4680, which were all related to higher COMT activity, was associated with an increase in several dimensions of negative symptoms and anhedonia. In male patients with schizophrenia, carriers of the MAO-B rs1799836 A allele, presumably associated with higher MAO-B activity, had a higher severity of alogia, while carriers of the A allele of the MAO-B rs6651806 had a higher severity of negative symptoms. These findings suggest that higher dopamine degradation, associated with COMT and MAO-B genetic variants, is associated with a sex-specific increase in the severity of negative symptoms in schizophrenia patients.


2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Omar Singleton ◽  
Max Newlon ◽  
Andres Fossas ◽  
Beena Sharma ◽  
Susanne R. Cook-Greuter ◽  
...  

Jane Loevinger’s theory of adult development, termed ego development (1966) and more recently maturity development, provides a useful framework for understanding the development of the self throughout the lifespan. However, few studies have investigated its neural correlates. In the present study, we use structural and functional magnetic resonance imaging (MRI) to investigate the neural correlates of maturity development in contemplative practitioners and controls. Since traits possessed by individuals with higher levels of maturity development are similar to those attributed to individuals at advanced stages of contemplative practice, we chose to investigate levels of maturity development in meditation practitioners as well as matched controls. We used the Maturity Assessment Profile (MAP) to measure maturity development in a mixed sample of participants composed of 14 long-term meditators, 16 long-term yoga practitioners, and 16 demographically matched controls. We investigated the relationship between contemplative practice and maturity development with behavioral, seed-based resting state functional connectivity, and cortical thickness analyses. The results of this study indicate that contemplative practitioners possess higher maturity development compared to a matched control group, and in addition, maturity development correlates with cortical thickness in the posterior cingulate. Furthermore, we identify a brain network implicated in theory of mind, narrative, and self-referential processing, comprising the posterior cingulate cortex, dorsomedial prefrontal cortex, temporoparietal junction, and inferior frontal cortex, as a primary neural correlate.


1989 ◽  
Vol 155 (S7) ◽  
pp. 93-98 ◽  
Author(s):  
Nancy C. Andreasen

When Kraepelin originally defined and described dementia praecox, he assumed that it was due to some type of neural mechanism. He hypothesised that abnormalities could occur in a variety of brain regions, including the prefrontal, auditory, and language regions of the cortex. Many members of his department, including Alzheimer and Nissl, were actively involved in the search for the neuropathological lesions that would characterise schizophrenia. Although Kraepelin did not use the term ‘negative symptoms', he describes them comprehensively and states explicitly that he believes the symptoms of schizophrenia can be explained in terms of brain dysfunction:“If it should be confirmed that the disease attacks by preference the frontal areas of the brain, the central convolutions and central lobes, this distribution would in a certain measure agree with our present views about the site of the psychic mechanisms which are principally injured by the disease. On various grounds, it is easy to believe that the frontal cortex, which is specially well developed in man, stands in closer relation to his higher intellectual abilities, and these are the faculties which in our patients invariably suffer profound loss in contrast to memory and acquired ability.” Kraepelin (1919, p. 219)


2015 ◽  
Vol 46 (1) ◽  
pp. 125-135 ◽  
Author(s):  
Y. Wang ◽  
W.-H. Liu ◽  
Z. Li ◽  
X.-H. Wei ◽  
X.-Q. Jiang ◽  
...  

Background.Dysregulation of the striatum and altered corticostriatal connectivity have been associated with psychotic disorders. Social anhedonia has been identified as a predictor for the development of schizophrenia spectrum disorders. The aim of the present study was to examine corticostriatal functional connectivity in individuals with high social anhedonia.Method.Twenty-one participants with high social anhedonia score and 30 with low social anhedonia score measured by the Chinese version of the Revised Social Anhedonia Scale were recruited from university undergraduates (age 17–21 years) to undergo resting-state functional MRI scans. Six subdivisions of the striatum in each hemisphere were defined as seeds. Voxel-wise functional connectivity analyses were conducted between each seed and the whole brain voxels, followed by repeated-measures ANOVA for the group effect.Results.Participants with high social anhedonia showed hyper-connectivity between the ventral striatum and the anterior cingulate cortex and the insula, and between the dorsal striatum and the motor cortex. Hypo-connectivity in participants with high social anhedonia was also observed between the ventral striatum and the posterior cingulate cortex. Partial correlation analyses further showed that the functional connectivity between the ventral striatum and the prefrontal cortex was associated with pleasure experience and emotional suppression.Conclusions.Our findings suggest that altered corticostriatal connectivity can be found in participants with high levels of social anhedonia. Since social anhedonia has been considered a predictor for schizophrenia spectrum disorders, our results may provide novel evidence on the early changes in brain functional connectivity in at-risk individuals.


2018 ◽  
Vol 45 (5) ◽  
pp. 1051-1059 ◽  
Author(s):  
Dinesh K Shukla ◽  
Joshua John Chiappelli ◽  
Hemalatha Sampath ◽  
Peter Kochunov ◽  
Stephanie M Hare ◽  
...  

AbstractNegative symptoms represent a distinct component of psychopathology in schizophrenia (SCZ) and are a stable construct over time. Although impaired frontostriatal connectivity has been frequently described in SCZ, its link with negative symptoms has not been carefully studied. We tested the hypothesis that frontostriatal connectivity at rest may be associated with the severity of negative symptoms in SCZ. Resting state functional connectivity (rsFC) data from 95 mostly medicated patients with SCZ and 139 healthy controls (HCs) were acquired. Negative symptoms were assessed using the Brief Negative Symptom Scale. The study analyzed voxel-wise rsFC between 9 frontal “seed regions” and the entire striatum, with the intention to reduce potential biases introduced by predefining any single frontal or striatal region. SCZ showed significantly reduced rsFC between the striatum and the right medial and lateral orbitofrontal cortex (OFC), lateral prefrontal cortex, and rostral anterior cingulate cortex compared with HCs. Further, rsFC between the striatum and the right medial OFC was significantly associated with negative symptom severity. The involved striatal regions were primarily at the ventral putamen. Our results support reduced frontostriatal functional connectivity in SCZ and implicate striatal connectivity with the right medial OFC in negative symptoms. This task-independent resting functional magnetic resonance imaging study showed that medial OFC–striatum functional connectivity is reduced in SCZ and associated with severity of negative symptoms. This finding supports a significant association between frontostriatal connectivity and negative symptoms and thus may provide a potential circuitry-level biomarker to study the neurobiological mechanisms of negative symptoms.


2017 ◽  
Vol 49 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Lynn Mørch-Johnsen ◽  
Ingrid Agartz ◽  
Jimmy Jensen

2021 ◽  
Vol 49 (9) ◽  
pp. 1-13
Author(s):  
Yue Jiang

I investigated neural processing during the recognition of pride and joy in early childhood using the event-related potential (ERP) technique. Electroencephalography recording was taken of 21 children aged between 4 and 6 years. They were shown photographs of familiar peers and strangers whose facial expressions displayed the emotion of either pride or joy. ERPs were recorded for the children's judgment of the expression of these two emotions when an image was presented. The results demonstrate that the neural dynamics during children's recognition of pride and joy involve three stages: The early negative component is spontaneously responsive to familiar faces, the midlatency negative central component is responsive to expression of familiar faces, and the late positive component marks greater extended processing of an expression of pride. These findings provide new insight into the neural mechanism of pride and joy recognition in children aged 4 to 6 years.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Takashi Itahashi ◽  
Junya Fujino ◽  
Taku Sato ◽  
Haruhisa Ohta ◽  
Motoaki Nakamura ◽  
...  

Abstract Symptoms of autism spectrum disorder and attention-deficit/hyperactivity disorder often co-occur. Among these, sensory impairment, which is a core diagnostic feature of autism spectrum disorder, is often observed in children with attention-deficit/hyperactivity disorder. However, the underlying mechanisms of symptoms that are shared across disorders remain unknown. To examine the neural correlates of sensory symptoms that are associated with autism spectrum disorder and attention-deficit/hyperactivity disorder, we analysed resting-state functional MRI data obtained from 113 people with either autism spectrum disorder or attention-deficit/hyperactivity disorder (n = 78 autism spectrum disorder, mean age = 29.5; n = 35 attention-deficit/hyperactivity disorder, mean age = 31.2) and 96 neurotypical controls (mean age = 30.6, range: 20–55 years) using a cross-sectional study design. First, we used a multi-dimensional approach to examine intrinsic brain functional connectivity related to sensory symptoms in four domains (i.e. low registration, sensation seeking, sensory sensitivity and sensation avoidance), after controlling for age, handedness and head motion. Then, we used a partial least squares correlation to examine the link between sensory symptoms related to intrinsic brain functional connectivity and neurodevelopmental symptoms measured using the Autism Spectrum Quotient and Conners’ Adult Attention-Deficit/Hyperactivity Disorder Rating Scale, regardless of diagnosis. To test whether observed associations were specific to sensory symptoms related to intrinsic brain functional connectivity, we conducted a control analysis using a bootstrap framework. The results indicated that transdiagnostic yet distinct intrinsic brain functional connectivity neural bases varied according to the domain of the examined sensory symptom. Partial least squares correlation analysis revealed two latent components (latent component 1: q < 0.001 and latent component 2: q < 0.001). For latent component 1, a set of intrinsic brain functional connectivity was predominantly associated with neurodevelopmental symptom-related composite score (r = 0.64, P < 0.001), which was significantly correlated with Conners’ Adult Attention-Deficit/Hyperactivity Disorder Rating Scale total T scores (r = −0.99, q < 0.001). For latent component 2, another set of intrinsic brain functional connectivity was positively associated with neurodevelopmental symptom-related composite score (r = 0.58, P < 0.001), which was eventually positively associated with Autism Spectrum Quotient total scores (r = 0.92, q < 0.001). The bootstrap analysis showed that the relationship between intrinsic brain functional connectivity and neurodevelopmental symptoms was relative to sensory symptom-related intrinsic brain functional connectivity (latent component 1: P = 0.003 and latent component 2: P < 0.001). The current results suggest that sensory symptoms in individuals with autism spectrum disorder and those with attention-deficit/hyperactivity disorder have shared neural correlates. The neural correlates of the sensory symptoms were associated with the severity of both autism spectrum disorder and attention-deficit/hyperactivity disorder symptoms, regardless of diagnosis.


Sign in / Sign up

Export Citation Format

Share Document