scholarly journals Chromatin-remodeling and the initiation of transcription

2015 ◽  
Vol 48 (4) ◽  
pp. 465-470 ◽  
Author(s):  
Yahli Lorch ◽  
Roger D. Kornberg

AbstractThe nucleosome serves as a general gene repressor by the occlusion of regulatory and promoter DNA sequences. Repression is relieved by the SWI/SNF-RSC family of chromatin-remodeling complexes. Research reviewed here has revealed the essential features of the remodeling process.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Alisha Schlichter ◽  
Margaret M Kasten ◽  
Timothy J Parnell ◽  
Bradley R Cairns

SWI/SNF-family chromatin remodeling complexes, such as S. cerevisiae RSC, slide and eject nucleosomes to regulate transcription. Within nucleosomes, stiff DNA sequences confer spontaneous partial unwrapping, prompting whether and how SWI/SNF-family remodelers are specialized to remodel partially-unwrapped nucleosomes. RSC1 and RSC2 are orthologs of mammalian PBRM1 (polybromo) which define two separate RSC sub-complexes. Remarkably, in vitro the Rsc1-containing complex remodels partially-unwrapped nucleosomes much better than does the Rsc2-containing complex. Moreover, a rsc1Δ mutation, but not rsc2Δ, is lethal with histone mutations that confer partial unwrapping. Rsc1/2 isoforms both cooperate with the DNA-binding proteins Rsc3/30 and the HMG protein, Hmo1, to remodel partially-unwrapped nucleosomes, but show differential reliance on these factors. Notably, genetic impairment of these factors strongly reduces the expression of genes with wide nucleosome-deficient regions (e.g., ribosomal protein genes), known to harbor partially-unwrapped nucleosomes. Taken together, Rsc1/2 isoforms are specialized through composition and interactions to manage and remodel partially-unwrapped nucleosomes.


2019 ◽  
Author(s):  
Alisha Schlichter ◽  
Margaret M. Kasten ◽  
Timothy J. Parnell ◽  
Bradley R. Cairns

AbstractSWI/SNF-family chromatin remodeling complexes, such as S. cerevisiae RSC, slide and eject nucleosomes to regulate transcription. Within nucleosomes, stiff DNA sequences confer spontaneous partial unwrapping, prompting whether and how SWI/SNF-family remodelers are specialized to remodel partially-unwrapped nucleosomes. RSC1 and RSC2 are orthologs of mammalian PBRM1 (polybromo) which define two separate RSC sub-complexes. Remarkably, in vitro the Rsc1-containing complex remodels partially-unwrapped nucleosomes much better than does the Rsc2-containing complex. Moreover, a rsc1Δ mutation, but not rsc2Δ, is lethal with histone mutations that confer partial unwrapping. Rsc1/2 isoforms both cooperate with the DNA-binding proteins Rsc3/30 and the HMG protein, Hmo1, to remodel partially-unwrapped nucleosomes, but show differential reliance on these factors. Notably, genetic impairment of these factors strongly reduces the expression of genes with wide nucleosome-deficient regions (e.g. ribosomal protein genes), known to harbor partially-unwrapped nucleosomes. Taken together, Rsc1/2 isoforms are specialized through composition and interactions to manage and remodel partially-unwrapped nucleosomes.


2007 ◽  
Vol 85 (4) ◽  
pp. 444-462 ◽  
Author(s):  
Elvin Brown ◽  
Sreepurna Malakar ◽  
Jocelyn E. Krebs

The development of a metazoan from a single-celled zygote to a complex multicellular organism requires elaborate and carefully regulated programs of gene expression. However, the tight packaging of genomic DNA into chromatin makes genes inaccessible to the cellular machinery and must be overcome by the processes of chromatin remodeling; in addition, chromatin remodeling can preferentially silence genes when their expression is not required. One class of chromatin remodelers, ATP-dependent chromatin-remodeling enzymes, can slide nucleosomes along the DNA to make specific DNA sequences accessible or inaccessible to regulators at a particular stage of development. While all ATPases in the SWI2/SNF2 superfamily share the fundamental ability to alter DNA accessibility in chromatin, they do not act alone, but rather, are subunits of a large assortment of protein complexes. Recent studies illuminate common themes by which the subunit compositions of chromatin-remodeling complexes specify the developmental roles that chromatin remodelers play in specific tissues and at specific stages of development, in response to specific signaling pathways and transcription factors. In this review, we will discuss the known roles in metazoan development of 3 major subfamilies of chromatin-remodeling complexes: the SNF2, ISWI, and CHD subfamilies.


Blood ◽  
2012 ◽  
Vol 119 (17) ◽  
pp. 4034-4046 ◽  
Author(s):  
Giuseppe Zardo ◽  
Alberto Ciolfi ◽  
Laura Vian ◽  
Linda M. Starnes ◽  
Monia Billi ◽  
...  

Abstract Epigenetic modifications regulate developmental genes involved in stem cell identity and lineage choice. NFI-A is a posttranscriptional microRNA-223 (miR-223) target directing human hematopoietic progenitor lineage decision: NFI-A induction or silencing boosts erythropoiesis or granulopoiesis, respectively. Here we show that NFI-A promoter silencing, which allows granulopoiesis, is guaranteed by epigenetic events, including the resolution of opposing chromatin “bivalent domains,” hypermethylation, recruitment of polycomb (PcG)–RNAi complexes, and miR-223 promoter targeting activity. During granulopoiesis, miR-223 localizes inside the nucleus and targets the NFI-A promoter region containing PcGs binding sites and miR-223 complementary DNA sequences, evolutionarily conserved in mammalians. Remarkably, both the integrity of the PcGs-RNAi complex and DNA sequences matching the seed region of miR-223 are required to induce NFI-A transcriptional silencing. Moreover, ectopic miR-223 expression in human myeloid progenitors causes heterochromatic repression of NFI-A gene and channels granulopoiesis, whereas its stable knockdown produces the opposite effects. Our findings indicate that, besides the regulation of translation of mRNA targets, endogenous miRs can affect gene expression at the transcriptional level, functioning in a critical interface between chromatin remodeling complexes and the genome to direct fate lineage determination of hematopoietic progenitors.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Callie Kwartler ◽  
Shuangtao Ma ◽  
Caroline Kernell ◽  
Xue-yan Duan ◽  
Charis Wang ◽  
...  

Actin genes encode for cytoskeletal proteins that polymerize to function in cellular motility, adhesion, and contraction. In mammalian cells, ubiquitously expressed β-actin also moves into the nucleus and associates with chromatin remodeling complexes, however a nuclear function of muscle-specific α-actins has not been previously assessed. We hypothesized that smooth muscle α-actin (SMA) plays a role in chromatin remodeling during the differentiation of smooth muscle cells (SMCs) to enable cell fate specification of SMCs. In explanted SMCs from human and mouse ascending aortas, cell fractionation and 2D gel electrophoresis identify both SMA and β-actin in the nuclear lysates. Nuclear SMA but not β-actin accumulates with SMC differentiation driven by serum starvation and transforming growth factor-β1 treatment. SMA accumulates into the nucleus early in the differentiation of SMCs from neural crest progenitor cells, prior to cytosolic accumulation. Immunoprecipitation studies show that SMA binds specifically to the INO80 and the SWI/SNF chromatin remodeling complexes, and this binding increases with SMC differentiation. Chromatin immunoprecipitation reveals that SMA is bound to the promoters of SMC-specific genes, including Acta2 , Cnn1, and Myh11 and that SMA is enriched over β-actin at these promoters with SMC differentiation. Finally, overexpression of SMA tagged with a nuclear localization sequence (NLS) in multiple cell types increases expression of SMC markers, whereas NLS-tagged β-actin localizes to the nucleus to the same extent but does not increase SMC marker expression in any cell type. Finally, we assessed whether skeletal muscle α-actin (SKA) and cardiac muscle α-actin (CMA) may play a similar role in skeletal and cardiac muscle cells. Both SKA and CMA translocate into the nucleus. CMA accumulates into the nucleus early in the differentiation of cardiomyocytes from pluripotent stem cells. Immunoprecipitation reveals that SKA binds to the SWI/SNF complex in differentiated C2C12 myotube cell cultures. These data support that nuclear SMA enriches with and participates in SMC differentiation, and suggest a potential nuclear role for other muscle specific α-actins in developing muscle cells.


Sign in / Sign up

Export Citation Format

Share Document