scholarly journals Plaster Characterization at the PPNB Site of Yiftahel (Israel) Including the Use of 14C: Implications for Plaster Production, Preservation, and Dating

Radiocarbon ◽  
2012 ◽  
Vol 54 (3-4) ◽  
pp. 887-896 ◽  
Author(s):  
Kristin M Poduska ◽  
Lior Regev ◽  
Francesco Berna ◽  
Eugenia Mintz ◽  
Ianir Milevski ◽  
...  

The Pre-Pottery Neolithic B (PPNB) site of Yiftahel, Israel, contains abundant plaster floors. We surveyed the states of preservation of the plasters using an infrared spectroscopic assay that characterizes the extent of disorder of the atoms in the calcite crystal lattice. We identified the 3 best-preserved plaster samples that had disorder signatures most similar to modern plaster. We then studied the surface layers, fine-grained matrices, and large aggregates of these samples using micromorphology, Fourier transform infrared (FTIR) microscopy, stable carbon and radiocarbon concentrations. Even though some of the plaster components have a geogenic appearance in micromorphology slides and in FTIR spectra, the 14C analyses show that all components were exposed to high temperatures and as a result were equilibrated with the 14C content of the atmosphere ∼10,000 yr ago. This implies that the plasters at Yiftahel were produced entirely from heat-altered calcite. We also show that these plasters have undergone significant diagenesis. The plaster component with the most disordered atomic signature, and hence the most similar in this respect to modern plaster, did indeed produce a 14C date close to the expected age.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bing Luo ◽  
Zhiguo Shu ◽  
Yalin Chen ◽  
Zhuo Li ◽  
Yufei Hou ◽  
...  

Shale is a typical fine-grained sedimentary rock with small grain sizes of matrix components, significant lithofacies variation of rock texture and structure, and strong heterogeneity of organic matter and mineral compositions. Characterization of mineral compositions and their heterogeneity in micro- to nanoscale are the key parameters to gas shale pore structure and rock physical properties. In order to study the microscale mineralogy heterogeneity of the lacustrine shales in the Triassic Yanchang Formation in the Ordos Basin, the micro-Fourier transform infrared spectroscopy (micro-FTIR) technique was conducted. Based on the specific micro-FTIR spectra peaks, the abundance of mineral compositions can be quantitatively determined in the selected microscale areas. The results show that within the range of 80 μm micro-FTIR test interval, both massive argillaceous shale and silty interlayered shale show obvious heterogeneity; in particular, the relatively homogeneous shale observed by the naked eyes also has strong mineral heterogeneity. The results of micro-FTIR spectra are basically consistent with the bulk X-ray diffraction (XRD) data. The advantage of this micro-FTIR technique includes higher resolution (less than 100 μm) and in situ mineral characterization of shale samples at micro- and nanoscale.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Siong Fong Sim ◽  
Amelia Laccy Jeffrey Kimura

Fourier transform infrared (FTIR) spectroscopy has been advocating a promising alternative for Karl Fischer titration method for quantification of moisture in oil. This study aims to integrate partial least squares regression (PLSR) approach on FTIR spectra for prediction of moisture in locally accessible transformer oil and lubricating oil. The oil samples spiked with known moisture concentrations were extracted with acetonitrile and subjected to analysis with an FTIR spectrophotometer. The PLSR model was built based on 100 training/test splits, and the prediction performance was measured with the percentage root mean squares error (% RMSE). The range of concentration studied was between 0 and 5000 ppm. The marker region of moisture was found at 3750–3400 and 1700–1600 cm−1 with the latter demonstrating a better predictive ability in both lubricating oil and transformer oil. The prediction of moisture in lubricating oil was characterized with lower % RMSE. At concentration less than 700 ppm, the prediction accuracy deteriorates suggesting poor sensitivity. The PLSR was implemented on IR spectra of a set of blind samples, verified with Karl Fischer (for transformer oil) method and Kittiwake (for lubricating oil) method. The prediction was encouraging at concentrations above 1000 ppm; at lower concentrations, the prediction was characterized with high percent error. The algorithm, validated with 100 training/test splits, was converted into an executable program for prediction of moisture based on FTIR spectra. This program can be used for prediction of other substances given that the marker region is identified. FTIR can be used for prediction of moisture in oil nevertheless the sensitivity and precision is low for samples with low moisture concentration.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Dongmei Chen ◽  
Huafeng Shao ◽  
Wei Yao ◽  
Baochen Huang

Some polyisoprene samples of different microstructure contents were studied by Fourier transform infrared (FTIR) and1H Nuclear magnetic resonance (1H NMR). On the basis of detailed analysis of FTIR spectra of polyisoprene, the shift of absorption peaks caused by microstructure content’s variation was discussed. The contents of the polyisoprene samples’ microstructure which was determined by the1H NMR was used as the standard. Through the choice, calculation, and comparison with the corresponding absorption peaks of FTIR, a method based on the results of the analysis has been developed for the determination of the microstructure contents of polyisoprene by FTIR.


The Analyst ◽  
2018 ◽  
Vol 143 (23) ◽  
pp. 5711-5717 ◽  
Author(s):  
A. V. Rutter ◽  
J. Crees ◽  
H. Wright ◽  
D. G. van Pittius ◽  
I. Yousef ◽  
...  

FTIR spectra of cells on glass coverslips allows the study of the Amide I region.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
V. Erukhimovitch ◽  
M. Huleihil ◽  
M. Huleihel

Fourier transform infrared microspectroscopy (FTIR-M) can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1) or contaminated withE. colibacteria orCandida albicansfungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1and at 1373 cm−1regions, while pureE. coliand cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.


2011 ◽  
Vol 7 (1) ◽  
pp. 65-74 ◽  
Author(s):  
G. E. A. Swann ◽  
S. V. Patwardhan

Abstract. The development of a rapid and non-destructive method to assess purity levels in samples of biogenic silica prior to geochemical/isotope analysis remains a key objective in improving both the quality and use of such data in environmental and palaeoclimatic research. Here a Fourier Transform Infrared Spectroscopy (FTIR) mass-balance method is demonstrated for calculating levels of contamination in cleaned sediment core diatom samples from Lake Baikal, Russia. Following the selection of end-members representative of diatoms and contaminants in the analysed samples, a mass-balance model is generated to simulate the expected FTIR spectra for a given level of contamination. By fitting the sample FTIR spectra to the modelled FTIR spectra and calculating the residual spectra, the optimum best-fit model and level of contamination is obtained. When compared to X-ray Fluorescence (XRF) the FTIR method portrays the main changes in sample contamination through the core sequence, permitting its use in instances where other, destructive, techniques are not appropriate. The ability to analyse samples of <1 mg enables, for the first time, routine analyses of small sized samples. Discrepancies between FTIR and XRF measurements can be attributed to FTIR end-members not fully representing all contaminants and problems in using XRF to detect organic matter external to the diatom frustule. By analysing samples with both FTIR and XRF, these limitations can be eliminated to accurately identify contaminated samples. Future, routine use of these techniques in palaeoenvironmental research will therefore significantly reduce the number of erroneous measurements and so improve the accuracy of biogenic silica/diatom based climate reconstructions.


Sign in / Sign up

Export Citation Format

Share Document