scholarly journals The Radiocarbon Content of Individual Lignin-Derived Phenols: Technique and Initial Results

Radiocarbon ◽  
2000 ◽  
Vol 42 (2) ◽  
pp. 219-227 ◽  
Author(s):  
A P McNichol ◽  
J R Ertel ◽  
T I Eglinton

We present a method for the isolation of phenolic compounds derived from lignin for radiocarbon analysis. These phenols are generated by chemical oxidation of polymeric materials and derivatized for separation and recovery by preparative capillary gas chromatography (PCGC). This technique yields tens of micrograms of pure, stable compounds that can be converted to graphite and analyzed by accelerator mass spectrometry (AMS). Analysis of model flavor compounds and dated woods indicates that, in most cases, the radiocarbon (14C) contents of the individual compounds, corrected for the contribution of the derivative, agree with that of the bulk material to within 20%.

Author(s):  
Narendra Narain ◽  
Anderson Santos Fontes ◽  
Maria Terezinha Santos Leite-Neta ◽  
Patricia Nogueira Matos ◽  
Hannah Caroline Santos Araújo ◽  
...  

This study was aimed to obtain and characterize the dried powder of cajá-umbu (Spondias spp) fruit pulp obtained by spray-drying and lyophilization. Spray-drying of the pulp was done at different temperatures. Analysis of bioactive compounds and volatile compounds was performed. The total phenolic compounds content was high in the dried powder obtained at the temperature of 140 °C. The volatiles analysis of dried powders revealed  that the powder dried at  140°C contained a larger number of compounds. The cajá-umbu powder showed that it is a better alternative for storage and conservation since it retained the majority of volatile compounds. Keywords: Cajá-umbu, volatile compounds, gas chromatography, mass spectrometry.


Radiocarbon ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 711-716 ◽  
Author(s):  
Christopher Bronk Ramsey ◽  
R. E. M. Hedges

In 14C tracer studies, and when looking for modern contamination in archaeological samples, it is often necessary to measure the 14C concentration of individual chemical fractions. Gas chromatography (GC) is one method that is frequently used for separation of chemical fractions. The gas ion source at the Oxford Radiocarbon Accelerator Unit for accelerator mass spectrometry (AMS) provides the opportunity to measure fractions from a GC instrument directly. Although the first investigations are likely to be 14C tracer studies, such a GC-AMS system could find much wider application. We present results from a pilot study of the peak sensitivity, baseline stability and crosstalk of the accelerator system used in this way. We also discuss the practical considerations in developing a GC-AMS instrument for routine use.


RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 96510-96517 ◽  
Author(s):  
Jhih-Ming Chen ◽  
Chun-Chuan Yang ◽  
Wu-Hsun Chung ◽  
Wang-Hsien Ding

This work represents the development of vortex-homogenized matrix solid-phase dispersion (VH-MSPD) as an effective and simple method to rapidly extract halogenated phenolic compounds in marketed seafood samples.


Holzforschung ◽  
2014 ◽  
Vol 68 (5) ◽  
pp. 505-517 ◽  
Author(s):  
Maree Brennan ◽  
J. Paul McLean ◽  
Andreas Klingberg ◽  
Clemens Altaner ◽  
Philip J. Harris

Abstract The potential of pyrolysis followed by gas-chromatography and mass-spectrometry (Py-GC/MS) was investigated for identifying compression wood (CW) in saplings of radiata pine (Pinus radiata) by examining samples of CW and opposite wood (OW). Phenolic compounds and anhydrosugars were identified among the pyrolysis products that provided information about the cell-wall polymers. Sample preparation, such as coarse-milling, fine-milling, and fine-milling followed by calcium-chloride treatment was also investigated. Fine-milling typically decreased the total yield of phenolic compounds compared with coarse-milling. Fine-milling followed by calcium-chloride washing significantly increased the proportions of pyrolysis products from polysaccharides, specifically from (1→4)-β-D-galactans that were of interest in distinguishing CW from OW. Six pyrolysis products were identified that were unique to the CW samples examined, including derivatives of (1→4)-β-D-galactans and H-units of lignin. Other pyrolysis products were identified that had significantly different proportions between the two wood types, and sometimes among samples of the same wood type.


Sign in / Sign up

Export Citation Format

Share Document