scholarly journals Extension of the Holocene Dendrochronology by the Preboreal Pine Series, 8800 to 10,100 BP

Radiocarbon ◽  
1986 ◽  
Vol 28 (2B) ◽  
pp. 961-967 ◽  
Author(s):  
Bernd Becker ◽  
Bernd Kromer

Holocene tree-ring chronologies have been established for south-central Europe covering the past 11,000 years. The Hohenheim absolute oak chronology extends to 4089 bc. The C-calibrated mid-Holocene floating oak master covers a 3181-year period from ca 4045 to 7225 bc. The earliest well-replicated floating oak master (estimated calendar age 7215 to 7825 bc) extends the European oak dendrochronology back to Boreal times.Further extension of the Holocene dendrochronology has been achieved by subfossil oak and pine trees from the Rhine, Main, and Danube Rivers. A 774-year floating series of Preboreal pine has been established. 14C ages range (from younger to older end) from 9200 to 9800 BP. Within this series a major atmospheric 14C variation is indicated, resulting in nearly constant 14C ages (9600 BP) over a period of 370 tree-rings.The European oak and pine tree-ring chronologies cover without major gaps the entire Holocene epoch. Based on the length of the dendro-records, an approximate solar year age of 11,280 years is calculated for the Holocene/Pleistocene boundary.The Preboreal pine forests along the rivers were replaced by mixed oak forests between 9200 and 8800 BP. By linking the earliest oak masters and the Preboreal pine series, the European dendrochronology can be extended up to the end of Late Glacial times.

Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Fusa Miyake ◽  
Kimiaki Masuda ◽  
Toshio Nakamura ◽  
Katsuhiko Kimura ◽  
Masataka Hakozaki ◽  
...  

AbstractTwo radiocarbon excursions (AD 774–775 and AD 993–994) occurred due to an increase of incoming cosmic rays on a short timescale. The most plausible cause of these events is considered to be extreme solar proton events (SPE). It is possible that there are other annual 14C excursions in the past that have yet to be confirmed. In order to detect more of these events, we measured the 14C contents in bristlecone pine tree-ring samples during the periods when the rate of 14C increase in the IntCal data is large. We analyzed four periods every other year (2479–2455 BC, 4055–4031 BC, 4465–4441 BC, and 4689–4681 BC), and found no anomalous 14C excursions during these periods. This study confirms that it is important to do continuous measurements to find annual cosmic-ray events at other locations in the tree-ring record.


1996 ◽  
Vol 6 (3) ◽  
pp. 97 ◽  
Author(s):  
PM Brown ◽  
CH Sieg

Chronologies of fire events were reconstructed from crossdated fire-scarred ponderosa pine trees for four sites in the south-central Black Hills. Compared to other ponderosa pine forests in the southwest US or southern Rocky Mountains, these communities burned less frequently. For all sites combined, and using all fires detected, the mean fire interval (MFI), or number of years between fire years, was 16 years (± 14 SD) for the period 1388 to 1900. When a yearly minimum percentage of trees recording scars of ≥ 25% is imposed, the MFI was 20 years (± 14 SD). The length of the most recent fire-free period (104 years, from 1890 to 1994) exceeds the longest intervals in the pre-settlement era (before ca. 1874), and is likely the result of human-induced land use changes. Based on fire scar position within annual rings, most past fires occurred late in the growing season or after growth had ceased for the year. These findings have important implications for management of ponderosa pine forests in the Black Hills and for understanding the role of fire in pre-settlement ecosystem function.


1992 ◽  
Vol 29 (8) ◽  
pp. 1746-1755 ◽  
Author(s):  
Michael J. Bovis ◽  
Penny Jones

Large earthflows in south-central British Columbia have exhibited regionally consistent fluctuations in their movement during the Holocene. Over the past 60 years, air photographs show that many earthflows were reactivated during the relatively wet period 1950–1985. Over the past 300 years, a fairly coherent relationship is established between periods of wetter climate, defined by the tree-ring record, and phases of slope movement, defined by the record of compression-wood development in conifers located near earthflow headscarps. On a time scale of several thousand years, stratigraphic evidence shows that many large earthflows in the region underwent significant reactivation of movement in the post-Mazama period, during the relatively wet, cool Neoglacial interval of the Holocene. These lines of evidence indicate that Holocene hydroclimatic changes have exerted an important influence on the regimen of large earthflows. Earthflows present a wealth of paleogeomorphic information, hitherto largely neglected, that allows a reconstruction of the changing rate of mass movement with time.


1999 ◽  
Vol 51 (3) ◽  
pp. 238-247 ◽  
Author(s):  
Gerd Wenzens

AbstractIn the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Rı́o Cóndor valley three subsequent advances have been identified.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 90
Author(s):  
Denis A. Demidko ◽  
Olga V. Trefilova ◽  
Sergey S. Kulakov ◽  
Pavel V. Mikhaylov

The pine looper Bupalus piniaria is one of the most widespread phyllophagous insect species across Northern Eurasia, defoliating Scots pine forests over vast territories. Since there are not enough long-term documented observations on a series of outbreaks, there is a need for methods allowing them to be reconstructed to study their dynamics patterns. Previously, dendrochronological methods were successfully used to solve such issues. However, the most common approach is not applicable for the Western Siberian forest-steppe since it requires comparison with a non-damaged tree species close to pine in terms of longevity and resistance to rot. In the pine forests of the steppe and forest-steppe zones of Western Siberia, there are no species that are not damaged by the pine looper that meets these requirements. Methods allowing not using control species are also not free from disadvantages (e.g., weak specificity). Therefore, we have developed a new method based on the analysis, not of the tree-ring width but the early- and latewood width to reconstruct past defoliation events. The past defoliation by the pine looper is indicated by the presence of a negative pointer year for latewood, followed by a negative pointer year for earlywood in a subsequent year among the majority of individuals. Linear modeling showed a difference between the climate impact on radial growth and the defoliation one. The obtained reconstruction was compared with the results of other methods (mowing window, OUTBREAK, independent component analysis), literature, and Forest Service data. The developed new method (pointer year method; PYM) showed high efficiency confirmed by results of the tree-ring series analysis (11 revealed outbreaks in the past). Compared with other reconstruction techniques under the given conditions (a favorable combination of heat and humidity; probably low-intense and short defoliation), the proposed method provided more precise results than those proposed earlier. Due to high accuracy, the PYM can be useful for detecting late-summer and autumn past defoliations of tree species with clear difference between early- and latewood even though the damage was weak.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1111-1122 ◽  
Author(s):  
Michael Friedrich ◽  
Sabine Remmele ◽  
Bernd Kromer ◽  
Jutta Hofmann ◽  
Marco Spurk ◽  
...  

The combined oak and pine tree-ring chronologies of Hohenheim University are the backbone of the Holocene radiocarbon calibration for central Europe. Here, we present the revised Holocene oak chronology (HOC) and the Preboreal pine chronology (PPC) with respect to revisions, critical links, and extensions. Since 1998, the HOC has been strengthened by new trees starting at 10,429 BP (8480 BC). Oaks affected by cockchafer have been identified and discarded from the chronology. The formerly floating PPC has been cross-matched dendrochronologically to the absolutely dated oak chronology, which revealed a difference of only 8 yr to the published 14C wiggle-match position used for IntCal98. The 2 parts of the PPC, which were linked tentatively at 11,250 BP, have been revised and strengthened by new trees, which enabled us to link both parts of the PPC dendrochronologically. Including the 8-yr shift of the oak-pine link, the older part of the PPC (pre-11,250 BP) needs to be shifted 70 yr to older ages with respect to the published data (Spurk 1998). The southern German part of the PPC now covers 2103 yr from 11,993–9891 BP (10,044–7942 BC). In addition, the PPC was extended significantly by new pine chronologies from other regions. A pine chronology from Avenches and Zürich, Switzerland, and another from the Younger Dryas forest of Cottbus, eastern Germany, could be crossdated and dendrochronologically matched to the PPC. The absolutely dated tree-ring chronology now extends back to 12,410 cal BP (10,461 BC). Therefore, the tree-ring-based 14C calibration now reaches back into the Central Younger Dryas. With respect to the Younger Dryas-Preboreal transition identified in the ring width of our pines at 11,590 BP, the absolute tree-ring chronology now covers the entire Holocene and 820 yr of the Younger Dryas.


1990 ◽  
Vol 33 (3) ◽  
pp. 360-376 ◽  
Author(s):  
Brian Huntley

AbstractThe degree of analogy between fossil and contemporary pollen spectra in Europe has been investigated using the chord-distance dissimilarity measure. No-analog pollen spectra represent vegetation without a modern analog and hence, by inference, represent macroclimatic conditions different from any occurring in the region today. Such spectra have minimum chord distances that exceed a threshold value assessed using contemporary samples from the same and different vegetation u units. Contoured maps of minimum chord distance portray the changing patterns of analogous and no-analog pollen spectra, and hence vegetation units, since 13,000 yr B.P. No-analog vegetation units have been extensive in some regions for much of the Holocene, persisting as recently as 1000 years ago in many areas. The chord-distance measure has also been used to explore the patterns, extent, and rates of change in European pollen spectra since 13,000 yr B.P. Pollen spectra changed rapidly during late-glacial and early Holocene times and during the last millennium. Paleoclimatic changes have brought about the major changes in the Holocene paleovegetation of Europe. Human impact upon European vegetation has obscured neither the contemporary relationship between pollen spectra and vegetation nor the climatically determined long-term changes of vegetation across the continent since 13,000 yr B.P.


1997 ◽  
Vol 34 (5) ◽  
pp. 699-708 ◽  
Author(s):  
B. Brandon Curry

The ionic composition and salinity of Lake Manitoba and its late-glacial precursor, Lake Agassiz, changed significantly over the past 11 000 years. The paleochemical record reported here is based on modern analog environments of ostracodes identified in a new 14.5 m core from southern Lake Manitoba. The ionic composition of Lake Manitoba today is dominated by Na+, Cl−, and HC03−, with much less Ca2+, Mg2+, and K+. Evaporative concentration of modern Lake Manitoba water would lead to greater salinity and the near depletion of Ca2+ due to continued precipitation of calcite. During periods of highest salinity in the Holocene, however, Lake Manitoba supported Limnocythere staplini. Today this species inhabits waters in which [Ca2+] > [HCO3−], including springs associated with groundwater in Paleozoic bedrock discharging into Lake Winnipegosis (and eventually, after much dilution, into Lake Manitoba). Further complicating the Holocene record are intervals containing Limnocythere friabilis that suggest periodic influxes of dilute water, probably from the Assiniboine River, which bypasses Lake Manitoba today. The variations in Holocene paleochemistry indicated by the ostracode record imply changes in the proportion of overland flow plus precipitation relative to groundwater inputs to Lake Manitoba, independent of changes in evaporation relative to precipitation.


1984 ◽  
Vol 21 (3) ◽  
pp. 319-335 ◽  
Author(s):  
Serge Payette ◽  
Francis Boudreau

The stratigraphy of surficial deposits located in a snow-patch site, at an altitude of 1200 m in the Mount Jacques-Cartier area, provides evidence of a Late Glacial to mid-Holocene deglaciation. During the Late Glacial, or at the beginning of the Holocene, the diamictons on the high summits of the McGerrigle Mountains were affected by a severe periglacial climate, responsible for the formation of most of the periglacial landforms, such as sorted polygons, sorted stripes, stone-banked lobes, and block fields. During the Holocene, these landforms were fossilized by vegetation, and podzolic soil profiles developed within the stony deposits. After the Hypsithermal, a cooling trend was registered in snow-patch sites, where gelifluction was active after ca. 5200, 3470 – 3340, 2500, 2100, 1860, 1490, and 650 BP. Subalpine meadows followed the opening of the forest, at least since 2200 BP, and were due to neoglacial cooling. Within the alpine belt, the coniferous cover regression is registered at least since 1400 BP. During the so-called Little Ice Age of the past centuries, conifers retracted because of periglacial activity, which was followed by the formation of sorted stripes and gelifluction lobes. The extinction of tree species in the alpine tundra is related to periglacial activity, an ecological situation rather specific to the high summits of Gaspé.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 446
Author(s):  
Yingfeng Bi ◽  
Cory Whitney ◽  
Jianwen Li ◽  
Jingchao Yang ◽  
Xuefei Yang

Forests in low-latitude (0° N–30° N) regions are important for greenhouse gas sequestration. They harbor around 25% of vegetation carbon stocks. The productivity of these forests is expected to change as the global climate changes. They may absorb less greenhouse gasses, with negative effects on the global climate. However, little is known about how exactly these forests will respond to climate change. Here, we focus on the largest pine forests in low-latitude forests areas in southwest China. These forests have experienced rapid climate warming over the past 60 years. We collected tree-ring cores from two naturally occurring key afforestation pine tree species: Pinus yunnanensis Franch. and Pinus armandii Franch. in Baoshan and Lijiang of Yunnan. We used basal area increment (BAI) to examine the productivity trends of these two species over long-time scales, and Partial Least Squares regression analysis together with Pearson correlation analysis to identify the critical climate periods for the growth of these two species. We found that: (1) regional pine tree productivity began to decline at the beginning of this century. (2) The radial growth of both species had the strongest positive correlation with the spring Palmer Drought Severity Index (PDSI) and precipitation and the strongest negative correlation with spring temperatures. (3) Climate responses differ by species with higher positive correlations between tree-ring width, PDSI, and precipitation in P. armandii than in P. yunnanensis at similar locations. (4) Climate responses differ by location with higher positive correlations between tree-ring width and PDSI in Lijiang than in Baoshan for P. yunnanensis. Our results suggest that spring moisture availability is the main limiting factor for pine tree growth, especially for P. yunnanensis in Lijiang and P. armandii in Baoshan. Future regional warming and warm-induced drought conditions may have negative effects on the growth of pine trees. These results provide reference data for the sustainable management of pine forests in low-latitude regions of southwest China and may be useful in assessing the sustainable carbon sink ability of pine forests in this region under climate change.


Sign in / Sign up

Export Citation Format

Share Document