Johnsongrass Control in Soybeans by Trifluralin and Nitralin

Weed Science ◽  
1974 ◽  
Vol 22 (2) ◽  
pp. 111-115 ◽  
Author(s):  
C. G. McWhorter

Field experiments were conducted to study the feasibility of using trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) and nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline] for the selective control of johnsongrass [Sorghum halepense(L.) Pers.] from rhizomes and seed in soybeans[Glycine max(L.) Merr. ‘Lee’]. Both herbicides were incorporated into the soil at 0.56 to 3.36 kg/ha with two disk cultivations immediately after application. Most effective johnsongrass control on Dundee silty clay loam (sicl) followed treatments of nitralin or trifluralin at 1.68 to 3.36 kg/ha, but 2 years or more of continuous treatment were required for acceptable control. Trifluralin at 1.12 and 2.24 kg/ha on Sharkey clay and at 0.56 to 2.24 kg/ha on Bosket fine sandy loam (fsl) provided better average johnsongrass control over a 2-year period than nitralin at the same rates, but soybean yields after both herbicides at the same rates were equal. Immediate incorporation of trifluralin or nitralin in all three soils at 1.12 to 2.24 kg/ha for 2 successive years effectively controlled johnsongrass from rhizomes without soybean injury and with greatly increased soybean yields.

2007 ◽  
Vol 21 (1) ◽  
pp. 199-205 ◽  
Author(s):  
John H. O'Barr ◽  
Garry N. McCauley ◽  
Rodney W. Bovey ◽  
Scott A. Senseman ◽  
James M. Chandler

Clomazone is an effective herbicide widely used for PRE grass control in rice. However, use of clomazone on sandy textured soils of the western Texas rice belt can cause serious rice injury. Two field experiments at three locations were conducted in 2002 and 2003 to determine the optimum rate range that maximizes barnyardgrass and broadleaf signalgrass control and minimizes rice injury across a wide variety of soil textures and planting dates. At Beaumont (silty clay loam), Eagle Lake (fine sandy loam), and Ganado (fine sandy loam), TX, PRE application of 0.34 kg ai/ha clomazone applied to rice planted in March, April, or May optimized barnyardgrass and broadleaf signalgrass control and rice yield while minimizing rice injury. Data suggest that, although injury might occur, clomazone is safe to use in rice on sandy textured soils.


Weed Science ◽  
1982 ◽  
Vol 30 (6) ◽  
pp. 688-691 ◽  
Author(s):  
Michael G. Patterson ◽  
Gale A. Buchanan ◽  
Robert H. Walker ◽  
Richard M. Patterson

Analysis of fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] in soil solution after application of 0.5 or 1.0 ppmw revealed up to five-fold differences among three Alabama soils (Lucedale fine sandy loam, Decatur silty clay loam, and Sacul loam). Differences in fluometuron in soil solution were attributed to variable organic matter present and clay fractions. Fluometuron concentration in soil solution for each soil correlated well with control of four broadleaf weed species in a field experiment.


Weed Science ◽  
1978 ◽  
Vol 26 (4) ◽  
pp. 327-331 ◽  
Author(s):  
R. S. Moomaw ◽  
A. R. Martin

Field experiments were conducted on a Moody silty clay loam (pH 6.5) and a Crofton silt loam (pH 7.9) to evaluate the influence of soil texture and pH on metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] toxicity to soybeans [Glycine max(L.) Merr. ‘Amsoy 71’] as influenced by trifluralin [α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine]. One Crofton silt loam site contained atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] residue. Soybean growth and yield was not significantly affected by metribuzin and trifluralin applications on the Moody silty clay loam. On the Crofton silt loam without atrazine residue, substantial early season soybean injury from metribuzin did not result in significantly reduced soybean yield. Atrazine residue from previous row banding on corn(Zea maysL.) on the Crofton silt loam reduced soybean tolerance to metribuzin but normal use rates of 0.4 kg/ha metribuzin did not significantly reduce soybean yield. Trifluralin reduced early season soybean injury from metribuzin but this effect was not reflected in soybean yield. Metribuzin injury to soybeans was greater in years when more rainfall and cooler temperatures occurred following herbicide application. Metribuzin applied either preplant incorporated with or as an overlay on trifluralin resulted in equal soybean injury and yield.


Weed Science ◽  
1969 ◽  
Vol 17 (4) ◽  
pp. 486-488 ◽  
Author(s):  
C. J. Scifres ◽  
O. C. Burnside ◽  
M. K. McCarty

More 4-amino-3,5,6-trichloropicolinic acid (picloram) was detected in soil samples by soybean (Glycine max(L.) Merr., var. Ford) bioassay when the herbicide was applied in the fall than when it was applied in the spring to several pasture types. Downward movement was greater in sandy loam than in silty clay loam. Dissipation of picloram was greatest in the upper 12 inches regardless of soil type. More picloram was detected in the 24 to 36-inch depth from plots treated 1, 2, or 3 years before sampling than in plots sampled the year of treatment. This indicated downward movement into the subsoil.


Weed Science ◽  
1977 ◽  
Vol 25 (3) ◽  
pp. 264-267 ◽  
Author(s):  
C.G. McWhorter

Field experiments were conducted to study the feasibility of using several dinitroaniline herbicides for the selective control of johnsongrass [Sorghum halepense(L.) Pers.] from seed and rhizomes in soybeans [Glycine max(L.) Merr. ‘Bragg’]. The herbicides were incorporated into the soil with two disk cultivations immediately after application. These were trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.6 to 2.2 kg/ha, nitralin [4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline] at 0.6 to 2.2 kg/ha, dinitramine (N4,N4-diethyl-α,α,α,-trifluoro-3,5-dinitrotoluene-2,4-diamine) at 0.4 to 1.5 kg/ha, fluchloralin [N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)aniline] at 0.6 to 2.2 kg/ha, profluralin [N-(cyclopropyl-methyl)-α,α,α-trifluoro-2,6-dinitro-N-propyl-p-toluidine] at 0.8 to 3.4 kg/ha, butralin [4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine] at 1.7 to 6.7 kg/ha, AC-92390 (N-sec-butyl-2,6-dinitro-3,4-xylidine) at 0.8 to 3.4 kg/ha, and AN-56477 [N,N-di(2-chloroethyl)-4-methyl-2,6-dinitroaniline] at 2.2 to 4.5 kg/ha. On Bosket sandy loam soil, the best average johnsongrass control over a 2-yr period was obtained following profluralin at 1.7 kg/ha and butralin at 3.4 kg/ha. These treatments also resulted in highest average soybean yields. On Sharkey clay soil, profluralin at 3.4 kg/ha and butralin at 6.7 kg/ha resulted in maximum johnsongrass control and soybean yields. Immediate incorporation of profluralin and butralin into both soils for 2 successive years effectively controlled johnsongrass from rhizomes without soybean injury and with greatly increased soybean yields. Trifluralin, nitralin, and fluchloralin also provided acceptable johnsongrass control within individual experiments, and greatly increased soybean yields.


Weed Science ◽  
1969 ◽  
Vol 17 (2) ◽  
pp. 241-245 ◽  
Author(s):  
O. C. Burnside ◽  
C. R. Fenster ◽  
G. A. Wicks ◽  
J. V. Drew

The persistence of five herbicides in six soils across Nebraska can be ranked from greatest to least as follows: 5-bromo-3-isopropyl-6-methyluracil (isocil) at 5 and 25 1b/A, 2-chloro-4,6-bis-(isopropylamino)-s-triazine (propazine) at 3 and 9 1b/A, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) at 3 and 9 1b/A, trichlorobenzyl chloride (hereinafter referred to as TCBC) at 7 and 49 1b/A, and 3-(3,4-dichlorophenyl)-1-methoxyl-1-methylurea (linuron) at 3 and 9 1b/A. Soil texture differences (sandy loam, very fine sandy loam, silt loam, and silty clay loam) had a greater influence on herbicide residue carryover than did climatic differences across Nebraska during 1962 to 1968. Soil carryover of herbicide residues was greater in coarse rather than fine-textured soils and in the drier regions of western than in eastern Nebraska. Leaching of herbicides into the soil profile was an avenue of herbicide dissipation.


1992 ◽  
Vol 6 (3) ◽  
pp. 583-586 ◽  
Author(s):  
John S. Wilson ◽  
Chester L. Foy

The soil organic matter and/or humic matter fraction was highly correlated with the adsorption of ICIA-0051 herbicide onto five soils; clay content and other soil factors were less correlated. The Freundlich equation was used to describe the adsorption of ICIA-0051 by the various soils. Based on the K constants, the general order for adsorption for each soil was Hyde silty clay loam > Frederick silt loam > Davidson clay = Bojac sandy loam > Appling loamy sand. Across all soils, 25 to 50% of the amount adsorbed was removed by two desorptions. Appling, Bojac, and Davidson soils retained less herbicide after two desorptions than did Frederick and Hyde.


Author(s):  
BR Irin ◽  
MA Mansur ◽  
MS Rahman

The present research was conducted to evaluate the monthly variations of macrozoobenthos of three ponds (pond 1, bottom soil is loam; pond 2, bottom soil is sandy loam; pond 3, bottom soil is silty clay loam) in relation to soil texture types of sediment. The major groups of macro-zoobenthos recorded were Chironomidae, Oligochaeta, Mollusca and Ceratopogonidae. The values of all water quality parameters such as temperature, water depth, rainfall, transparency, dissolved oxygen, pH, free CO2, NO3-N and PO4-P were found to have positive correlations in most cases, in some cases negative correlations and in few cases significant correlations. The abundance of Chironomidae was to be dominant in the pond no. 3 during the whole study period. The highest number of Oligochaeta (400 per m2) was found in pond no. 3 at depth of 150 cm and the lowest number of Oligochaeta (0 per m2) was found in pond nos. 1, 2 and 3 at both depths. The highest number of Chironomidae (1332 per m2) was found in pond no. 3 at depth of 150 cm and the lowest number of Chironomidae (444 per m2) was found in pond no. 2 at depth of 100 cm. The highest number of Ceratopogonidae (977 per m2) was found in pond no. 3 at the depth of 150 cm and the lowest number of Ceratopogonidae (178 per m2) was found in pond no. 2 at both depths. The highest number of Mollusca (1288 per m2) was found in pond no. 3 at the depth of 150 cm and the lowest number of Mollusca (222 per m2) was found in pond no. 2 at the depth of 100 cm. Satisfactory quantity of macrobenthos in the pond no. 3 at the depth of 150 cm than those of other two ponds. Between 2 depths (100 and 150 cm), the depth of 150 cm was to have highest quantity of macro-zoobenthos in all the three ponds because this depth was most favourable for macro-zoobenthos production. In pond no. 1, 2 and 3 relation of macro-benthos (no. per m2) with chemical parameters of pond bottom-soil conditions vary pond to pond which influence primary production and also influence macro-zoobenthos production (secondary production). The highest macro-zoobenthos population density was found in pond no. 3 followed by pond no. 1 and the lowest production in pond no. 2 but macro-zoobenthos production in pond no. 2 and pond no. 1 are more or less similar and macro-zoobenthos production in pond no. 3 is different and higher than those of pond nos. 1 and 2 which indicates that silty clay loam of bottom-soil is more suitable for macrozoobenthos than other soil textural classes of bottom-soil loam and sandy loam.Int. J. Agril. Res. Innov. & Tech. 7 (2): 27-35, December, 2017


1990 ◽  
Vol 70 (3) ◽  
pp. 435-444 ◽  
Author(s):  
N. MALIK ◽  
D. S. H. DRENNAN

Experiments were conducted to obtain a better understanding of the role of pH on the availability of fluridone (1-methyl-3-phenyl-5-[3-(trifluoromethyl) phenyl]-4(1 H)-pyridinone) in soil solution when used as a selective herbicide and the partitioning into aqueous and sediment phases when employed for aquatic plant control. Phytotoxicity of fluridone to seedling sorghum (Sorghum bicolor L.) plants increased with increasing pH of the sand-nutrient solution medium. Since stability and plant uptake of fluridone by bioassay plants were not affected by solution pH, the increasing phytotoxicity at basic pH was attributed to less adsorption and hence higher availability of the herbicide in solution. Soil adsorption studies with 14C-fluridone confirmed this trend, as the soil solution concentration at equilibrium increased from 0.091 to 0.258 μg mL−1 and from 0.216 to 0.354 μg mL−1, respectively, as pH of a sandy loam and silty clay loam increased from 3 to 9. In contrast, adsorption on the sandy loam and silty clay loam for the same pH range decreased from 4.108 to 2.435 μg g−1 and from 2.850 to 1.484 μg g−1, respectively. Smaller but significant changes in adsorption were also observed for an organic soil over this range. Key words: Herbicide, fluridone, pH, uptake, soil adsorption


Sign in / Sign up

Export Citation Format

Share Document