Interaction of Propanil and Selected Insecticides on Rice (Oryza sativa)

Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 800-803 ◽  
Author(s):  
Khosro Khodayari ◽  
Roy J. Smith ◽  
N. Philip Tugwell

Field experiments determined the potential interaction of insecticides and propanil [N-(3,4-dichlorophenyl) propanamide] in drill-seeded rice (Oryza sativaL. ‘Bond’). The carbamate insecticides carbaryl (1-naphthylmethylcarbamate) and methomyl {S-methylN-[(methylcarbamoyl) oxy] thioacetimidate} interacted more severely with propanil than the organophosphate methyl parathion [O,O-dimethylO-(p-nitrophenyl) phosphorothioate] in emulsifiable or encapsulated formulations. Carbaryl and methomyl injured rice vegetatively when applied from 7 days before to 4 days after propanil. Carbaryl was the only insecticide that interacted with propanil to reduce rice grain yield. Insecticides interacted adversely with propanil on rice grain yield when they were applied 2 days before propanil treatment. Insecticide interactions with propanil from most to least phytotoxic to rice plants for all times of application were: carbaryl > methomyl > emulsifiable methyl parathion > encapsulated methyl parathion.

Weed Science ◽  
1985 ◽  
Vol 33 (5) ◽  
pp. 703-707 ◽  
Author(s):  
Amadou Diarra ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted to investigate methods of controlling red rice (Oryza sativaL. ♯ ORYSA) in drill-seeded rice (O. sativa). Treatments included the rice cultivar ‘Mars', coated with calcium peroxide (CaO2) at 40% (w/w) and a crop protectant, R-33865 (O,O-diethyl-O-phenyl phosphorothioate) at 0.5 and 1% (v/w). Molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate) at 6.7 kg ai/ha was applied preplant incorporated (ppi). The land was flooded (2.5 to 5 cm deep) after seeding with rice (100 kg/ha, 2.5 cm deep), and the water was maintained throughout the growing season. CaO2, with or without molinate, increased rice grain yield 50% and increased rice culm density fivefold above untreated rice. Molinate applied ppi controlled 96% of the red rice. Rice seed coated with only CaO2or with CaO2plus R-33865 at 0.5%, each combined with ppi molinate, produced 5690 and 6030 kg/ha of grain, respectively. These high yields were associated with red rice control by molinate and good stands of rice provided by O2supplied by CaO2. R-33865 applied to rice seed at 1% (v/w) injured rice by reducing rice culm densities 41%, compared with rice without protectant.


1998 ◽  
Vol 12 (3) ◽  
pp. 537-541 ◽  
Author(s):  
David L. Jordan ◽  
J. Andrew Kendig

Field experiments were conducted to compare barnyardgrass control and rice grain yield following a single postemergence (POST) application of propanil plus clomazone with single or repeat POST applications of propanil alone or single POST applications of propanil plus pendimethalin, molinate, quinclorac, or thiobencarb. In four of 10 experiments, propanil plus clomazone controlled barnyardgrass better than single or repeat applications of propanil alone or single applications of propanil plus pendimethalin, molinate, quinclorac, or thiobencarb. The most consistent increase in rice yield over a single application of propanil occurred where clomazone was applied in mixture with propanil.


1975 ◽  
Vol 11 (2) ◽  
pp. 89-95 ◽  
Author(s):  
H. M. Shelton ◽  
L. R. Humphreys

SUMMARYUpland rice and Stylosanthes guyanensis were sown simultaneously in pure and mixed culture at varying densities at Na Pheng, central Laos. Vegetative growth of the rice was negatively related to stylo density over the range o to 81 stylo plants/m.2 Rice grain yield varied from 98·4 gm./m.2 in monoculture to 63·4 gm./m.2 when grown with 81 stylo plants/m.2 Rice was more competitive than stylo, but stylo growth was relatively independent of rice density over the range 20 to 120 rice plants/m.2


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 584
Author(s):  
Omnia M. Elshayb ◽  
Khaled Y. Farroh ◽  
Heba E. Amin ◽  
Ayman M. Atta

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


2020 ◽  
Vol 7 (01) ◽  
pp. 22-27
Author(s):  
Nalwida Rozen ◽  
Gusnidar Gusnidar ◽  
Nurhajati Hakim

A series of on-farm fi eld experiments were conducted in two locations in Padang, Koto Panjang and Koto Tingga, West Sumatera, Indonesia in 2015. The purpose of the experiment was to establish the formula of organic fertilizer derived from Tithonia supplied with micro nutrients, Zn and Mn, on rice. The experiments were conducted using completely-randomized block design with six treatments and three replications. The treatments were P = Tithonia Organic Fertilizer Plus (TOFP) + 3.0 kg Mn.ha-1, Q = TOFP + 3.0 kg Mn.ha-1+ 3.0 kg Zn.ha-1, R = TOFP + 4.5 kg Mn.ha-1 + 6 kg Zn.ha-1, S= TOFP + 4.5 kg Mn.ha-1+ 9 kg Zn.ha-1, T = TOFP only, U = 100% chemical fertilizer only. Treatment with micro nutrients as addition to TOFP (TOFP+ 3.0 kg Mn.ha-1 and TOFP+ 3.0 kg Mn.ha-1+3.0 kg Zn.ha-1) increased rice grain yield by 80 g per clump.


Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 120-123 ◽  
Author(s):  
Roy J. Smith

Yields of drill-seeded paddy rice (Oryza sativaL. ‘Lebonnet’) at optimum stands of 215 to 270 plants/m2at Stuttgart, Arkansas, were reduced 9, 18, 20, and 36% by bearded sprangletop [Leptochloa fascicularis(Lam.) Gray] densities of 11, 22, 54, and 108 plants/m2, respectively. There was a linear decrease in rice grain yield of 21 kg/ha for each bearded sprangletop plant per square meter. Weed densities of 54 and 108 plants/m2reduced head-rice yields (whole milled kernels) and a density of 108 plants/m2reduced germination of rice seed. The number of bearded sprangletop panicles produced per weed plant decreased as the weed density increased.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 106 ◽  
Author(s):  
Ke Zhang ◽  
Xiaojun Liu ◽  
Syed Tahir Ata-Ul-Karim ◽  
Jingshan Lu ◽  
Brian Krienke ◽  
...  

Accurate estimation of the nitrogen (N) spatial distribution of rice (Oryza sativa L.) is imperative when it is sought to maintain regional and global carbon balances. We systematically evaluated the normalized differences of the soil and plant analysis development (SPAD) index (the normalized difference SPAD indexes, NDSIs) between the upper (the first and second leaves from the top), and lower (the third and fourth leaves from the top) leaves of Japonica rice. Four multi-location, multi-N rate (0–390 kg ha−1) field experiments were conducted using seven Japonica rice cultivars (9915, 27123, Wuxiangjing14, Wunyunjing19, Wunyunjing24, Liangyou9, and Yongyou8). Growth analyses were performed at different growth stages ranging from tillering (TI) to the ripening period (RP). We measured leaf N concentration (LNC), the N nutrition index (NNI), the NDSI, and rice grain yield at maturity. The relationships among the NDSI, LNC, and NNI at different growth stages showed that the NDSI values of the third and fourth fully expanded leaves more reliably reflected the N nutritional status than those of the first and second fully expanded leaves (LNC: NDSIL3,4, R2 > 0.81; NDSIothers, 0.77 > R2 > 0.06; NNI: NDSIL3,4, R2 > 0.83; NDSIothers, 0.76 > R2 > 0.07; all p < 0.01). Two new diagnostic models based on the NDSIL3,4 (from the tillering to the ripening period) can be used for effective diagnosis of the LNC and NNI, which exhibited reasonable distributions of residuals (LNC: relative root mean square error (RRMSE) = 0.0683; NNI: RRMSE = 0.0688; p < 0.01). The relationship between grain yield, predicted yield, and NDSIL3,4 were established during critical growth stages (from the stem elongation to the heading stages; R2 = 0.53, p < 0.01, RRMSE = 0.106). An NDSIL3,4 high-yield change curve was drawn to describe critical NDSIL3,4 values for a high-yield target (10.28 t ha−1). Furthermore, dynamic-critical curve models based on the NDSIL3,4 allowed a precise description of rice N status, facilitating the timing of fertilization decisions to optimize yields in the intensive rice cropping systems of eastern China.


Weed Science ◽  
1988 ◽  
Vol 36 (3) ◽  
pp. 335-339 ◽  
Author(s):  
Gene D. Wills ◽  
Joe E. Street

Effects of propanil [N-(3,4-dichlorophenyl)propanamide] applied to three- to four-leaf rice (Oryza sativaL.) 1 or 7 days before, after, or tank mixed with methyl parathion (O,O-dimethyl-O-4-nitrophenyl phosphorothioate) were determined under different environmental conditions. Field experiments determined the effect on yield of drill-seeded rice, ‘Labelle’ for two planting dates in 1982 and ‘Lemont’ for one planting date in 1986. Treatments were applied at sunrise and at noon. Growth chamber and greenhouse experiments determined the effects of temperature, relative humidity (RH), and soil moisture on response of Labelle rice. In all experiments, propanil, both alone and with methyl parathion, resulted in 20 to 30% leaf burn during the first week after treatment with rapid recovery to less than 10% injury after 3 to 4 weeks. In field experiments, yields were not reduced in the treated rice below that in the untreated controls. In controlled-environment experiments, rice was not injured by propanil plus methyl parathion more than by propanil alone after 2 to 4 weeks. Both treated and untreated rice were injured more by the environmental conditions of high (40 C) temperature, low (40%) RH, and low (near the wilting point) soil moisture than by low (30 C) temperature, high (100%) RH, and flooded soil.


1997 ◽  
Vol 11 (2) ◽  
pp. 379-383 ◽  
Author(s):  
David L. Jordan ◽  
Daniel B. Reynolds ◽  
Stephen H. Crawford

The potential of alachlor, SAN 582H (Proposed name, dimethenamid), chlorimuron plus metribuzin, clomazone, imazaquin, imazethapyr, metolachlor, sulfentrazone, and trifluralin plus flumetsulam to injure rice the year following application to soybean was evaluated on silty clay and silt loam soils in Louisiana. These herbicides did not cause rice injury or yield reduction. Rice tolerance of the amine salt of 2,4-D or thifensulfuron plus tribenuron applied 0, 7, 14, and 28 d prior to planting was also evaluated on these soils. The amine salt of 2,4-D at 1.1 kg ai/ha injured rice 43 and 52% on silty clay and silt loam soils, respectively, in 1994 when applied the day of planting. In 1995, injury was 78 and 88% on these respective soils at this timing. When applied 7 d or more before planting, 2,4-D amine injured rice in one of four trials. Thifensulfuron plus tribenuron (17 + 9 g ai/ha) injured rice in one of four trials when applied the day of planting, but did not injure rice when applied 7 d before planting. No visual rice injury was observed when 2,4-D amine or thifensulfuron plus tribenuron was applied 14 or 28 d before planting. Rice grain yield was not affected by thifensulfuron plus tribenuron regardless of the interval between application and rice planting. In contrast, rice grain yield was reduced in all trials when 2,4-D amine was applied on the day of planting, and in one of four trials when applied 7 or 14 d before planting.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 350-359 ◽  
Author(s):  
Gulshan Mahajan ◽  
Vikas Poonia ◽  
Bhagirath S. Chauhan

Field experiments were conducted in Punjab, India, in 2011 and 2012 to study the integrated effect of planting pattern [uniform rows (20-cm spacing) and paired rows (15-, 25-, and 15-cm spacing)], cultivars (PR-115 and IET-21214), and weed control treatments (nontreated control, pendimethalin 750 g ai ha−1, bispyribac-sodium 25 g ai ha−1, and pendimethalin 750 g ha−1 followed by bispyribac-sodium 25 g ha−1) on weed suppression and rice grain yield in dry-seeded rice. In the nontreated control, IET-21214 had higher grain yield than PR-115 in both planting patterns. However, such differences were not observed within the herbicide treatment. IET-21214 in paired rows, even in nontreated control, provided grain yield (4.7 t ha−1) similar to that in uniform rows coupled with the sole application of pendimethalin (4.3 t ha−1) and bispyribac-sodium (5.0 t ha−1). In uniform rows, sequential application of pendimethalin (PRE) and bispyribac-sodium (POST) provided the highest grain yield among all the weed control treatments and this treatment produced grain yield of 5.9 and 6.1 t ha−1 for PR-115 and IET-21214, respectively. Similarly, in paired rows, PR-115 in paired rows treated with sequential application of pendimethalin and bispyribac-sodium had highest grain yield (6.1 t ha−1) among all the weed control treatments. However, IET-21214 with the sole application of bispyribac-sodium produced grain yield similar to the sequential application of pendimethalin and bispyribac-sodium. At 30 days after sowing, PR-115 in paired rows coupled with pendimethalin application accrued weed biomass (10.7 g m−2) similar to the sequential application of pendimethalin and bispyribac-sodium coupled with uniform rows (8.1 g m−2). Similarly, IET-21214 with bispyribac-sodium application provided weed control similar to the sequential application of pendimethalin and bispyribac-sodium. Our study implied that grain yield of some cultivars could be improved by exploring their competitiveness through paired-row planting patterns with less use of herbicides.


Sign in / Sign up

Export Citation Format

Share Document