Influence of Soil Moisture on Phytotoxicity of Cinmethylin to Various Crops

Weed Science ◽  
1991 ◽  
Vol 39 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on cinmethylin activity. The herbicide was applied preemergence at rates of 0.0, 0.3, 0.6, and 0.9 kg ai ha−1to both dry and moist sandy loam soil, followed by varying irrigation regimes. Plant species used in the study included soybean, snap bean, cotton, peanut, and cucumber. Peanut was the most tolerant to cinmethylin, followed by cotton, soybean, snap bean, and cucumber. When cinmethylin was applied to a moist soil, less crop injury resulted than when it was applied to a dry soil. If 7.6 cm of water was applied shortly after cinmethylin application to a dry soil, severe crop injury occurred. When 2.5 cm of irrigation was applied within 8 h or at 5 days after cinmethylin application to a dry soil, crop injury was reduced when compared to applying 7.6 cm irrigation.

2016 ◽  
Vol 20 (1) ◽  
pp. 59-64
Author(s):  
MN Islam ◽  
MM Rahman ◽  
MJA Mian ◽  
MH Ali

Leaching loss of nutrients hampers plant growth and contributes to environmental pollution. An experiment was conducted at the net house of Soil Science Department, Bangladesh Agricultural University, Mymensingh during January to May 2009 to find out the leaching loss of N, P, K and S from sandy loam soil. Each pot received 6.67 kg dry soil with an opening at the bottom for collecting leachates. Six treatments were used: T0 = control, T1 = NPKS (120, 25, 60 and 20 kg ha-1), T2 = NPKS (180, 37, 90 and 30 kg ha-1), T3 = NPKS (90, 5, 28 and 17 kg ha-1) + cowdung (2.5 t ha-1), T4 = NPKS (109, 25, 60 and 20 kg ha-1, N as USG) and T5 = as T1 but N applied as foliar spray. Treatments were arranged in a completely randomized design with three replications. Leachates were collected at 15 days interval for determination of NPKS. The total leaching loss of N, P, K and S due to different treatments ranged from 16.00 to 90.21, 0.07 to 0.29, 9.60 to 11.20 and 3.75 to 17.81 kg ha-1, respectively. Application of chemical fertilizer at higher rates resulted in greater loss of nutrients. Integrated fertilizer management with cowdung (T3) minimized such losses. Use of USG also reduced leaching loss of N, P, K and S. The application of cowdung and USG with recommended balanced fertilizer might be useful for minimizing N, P, K and S loss from wetland rice field.Bangladesh Rice j. 2016, 20(1): 59-64


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Steven G. Russell ◽  
Thomas J. Monaco ◽  
Jerome B. Weber

Field trials were conducted in 1986 and 1987 to determine the effects of moisture on herbicidal activity of cinmethylin applied preemergence at 0.0, 0.3, 0.6, and 0.9 kg ai ha to both dry and moist sandy loam soil. Herbicide application was followed by varying amounts of irrigation. Weed species included velvetleaf, prickly sida, green foxtail, and barnyardgrass. When cinmethylin was applied to a moist soil or when 2.5 cm of irrigation was applied 5 days after cinmethylin application to a dry soil, overall weed control was reduced. Optimum weed control resulted from cinmethylin application to dry soil followed either by a 2.5-cm irrigation within 8 h or a 7.6-cm irrigation within 36 h.


2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


2016 ◽  
Vol 11 (2) ◽  
pp. 49-60
Author(s):  
David Lomeling ◽  
Juma L.L. Yieb ◽  
Modi A. Lodiong ◽  
Mandlena C. Kenyi ◽  
Moti S. Kenyi ◽  
...  

1993 ◽  
Vol 7 (1) ◽  
pp. 29-32
Author(s):  
Birhanu Kinfe ◽  
Thomas F. Peeper

Persistence of BAY SMY 1500 and chlorsulfuron during storage for 0 to 6 mo at room temperature in air-dry clay loam soil with pH 7.6 and sandy loam soil with pH 6.6 was determined with conventional wheat bioassay procedures. BAY SMY 1500 had predicted half-lives greater than 6 mo in both soils. Half-lives of chlorsulfuron were 6.0 and 3.2 mo in the clay loam soil and sandy loam soil, respectively.


1959 ◽  
Vol 39 (1) ◽  
pp. 12-19
Author(s):  
S. J. Bocrget

Gypsum moisture blocks were calibrated in the laboratory in undisrupted soil cores, in soil cores which had been repacked to field density, and in unpacked soil baskets. Three soil types were used. It was found that the calibration curves obtained in the repacked soil cores and in the soil baskets were different from those obtained in the undisrupted soil cores. This indicates that the disruption of both structure and bulk density influenced the calibration of gypsum blocks. The effects were greater on the fine textured than on the coarse textured soils. The influence of bulk density was not important on a sandy loam soil. The variations in soil moisture obtained ranged from 1 to 6 per cent within the available water range.


Weed Science ◽  
1983 ◽  
Vol 31 (6) ◽  
pp. 763-765 ◽  
Author(s):  
Andrew I. Hsiao ◽  
A. Douglas Worsham ◽  
Donald E. Moreland

Leaching ofdl-strigol at six rates between 0.3 and 4.5 kg/ha through columns of sandy loam soil was estimated using a witchweed [Striga asiatica(L.) Kuntze # STRLU] germination bioassay. After 21 days of leaching daily with 1.27 cm of simulated rainfall, about 86% of the applied chemical remained in the top 2.5 cm of the soil, about 6% in the zone between 2.5 and 7.5 cm, and less than 1% in the soil at depths between 7.5 and 30 cm. However, even with the lowest rate of the chemical application, sufficientdl-strigol was leached to a soil depth between 22.5 and 30 cm to cause most, if not all, of the witchweed seeds to germinate. These results suggest thatdl-strigol has a potential for use as an effective tool for a witchweed control or eradication program. No significant degradation of the chemical occurred in moist soil during the 21-day period.


1988 ◽  
Vol 110 (1) ◽  
pp. 5-11 ◽  
Author(s):  
R. L. Yadav ◽  
S. R. Prasad

SummaryTo study the response of three sugarcane genotypes (CO 1148, COJ 64 and CO 1158) to variations in moisture availability in sandy loam soil (entisol), field trials were conductedat Lucknow (26·5° N, 80·5° E, 120 m altitude) during 1984–5 and 1985–6. Three moisture regimes, i.e. wet (irrigation at 75% available soil moisture (ASM)), moist (irrigation at 50% ASM) and dry (irrigation at 25% ASM) were maintained during the pre-monsoon (before June) period in spring-planted (February-March) sugarcane. During the summer months (until June)the variety CO 1148 had a significantly greater sheath moisture percentage than COJ 64 and CO 1158. Under stress conditions, leaf area index was reduced most in COJ 64 and least in CO 1148.Underground shoots and roots grew faster in CO 1148, and the growth of above-ground parts was quicker in COJ 64. Compared with the 75% ASM regime the reduction in cane yield in the 25% regime was more in COJ 64 and CO 1158 (31 t/ha) than in CO 1148 (12 t/ha). The water requirement of COJ 64 was greater than that of the other varieties. Therefore, for higheryields COJ 64 needed frequent irrigation whereas CO 1148 performed well even under moderate irrigation (50% ASM).


2014 ◽  
Vol 28 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Eric P. Westra ◽  
Dale L. Shaner ◽  
Philip H. Westra ◽  
Phillip L. Chapman

Pyroxasulfone dissipation and mobility in the soil was evaluated and compared toS-metolachlor in 2009 and 2010 at two field sites in northern Colorado, on a Nunn fine clay loam, and Olney fine sandy loam soil. Pyroxasulfone dissipation half-life (DT50) values varied from 47 to 134 d, and those ofS-metolachlor ranged from 39 to 63 d. Between years, herbicide DT50values were similar under the Nunn fine clay loam soil. Under the Olney fine sandy loam soil, dissipation in 2009 was minimal under dry soil conditions. In 2010, under the Olney fine sandy loam soil,S-metolachlor and pyroxasulfone had half-lives of 39 and 47 d, respectively, but dissipation rates appeared to be influenced by movement of herbicides below 30 cm. Herbicide mobility was dependent on site-year conditions, in all site-years pyroxasulfone moved further downward in the soil profile compared toS-metolachlor.


2012 ◽  
Vol 482-484 ◽  
pp. 372-375 ◽  
Author(s):  
Jing Cai Wang ◽  
Zi Qiang Xia ◽  
Ji Xing Wang ◽  
Zhi Hua Lu

An in situ field test with three indices of stability, sensitivity and accuracy on 12 soil moisture sensors was carried out in a sandy loam soil located in Lu’an at the subtropical monsoon climate region (China). The results showed that the majority of sensors were above 0.98 with a higher stability degree except for HT-DR-601(0.348) and DZN3 (0.661). Almost all sensors had a sensitive response to a certain amount of precipitation but Hydra Probe II was an exception. Trime-pico, SM300, ML2X, SWR6 and DH-FDR had a higher accuracy than 0.785, while DZN3 and HT-DR-601 were very lower. The mean differences of SM300, Trime-pico and Uni_SM were between -1% and 0, while HTSMS-02, DH-FDR, SWR6, ML2X, MP-4C and MP-323 were between -5% and -1%. DZN3 had the largest values of -17.8%. Finally, SM300, Trime-pico, ML2X, SWR6 and DH-FDR were got scores above 9 points while MP-323 and Uni_SM were above 8.4, showing an outstanding performance. The field performance study could provide some choices for the large-scale filed applications and the drought monitoring system.


Sign in / Sign up

Export Citation Format

Share Document