Competition of noogoora burr (Xanthium occidentale) and fierce thornapple (Datura ferox) with cotton (Gossypium hirsutum)

Weed Science ◽  
1998 ◽  
Vol 46 (4) ◽  
pp. 442-446 ◽  
Author(s):  
Graham W. Charles ◽  
Robert D. Murison ◽  
Steven Harden

Competitiveness of noogoora burr and fierce thornapple in irrigated cotton was assessed using area-of-influence methodology. Lint yields were regressed against distances from the weeds using spline regression. The resulting regression curves were used to estimate areas of influence and yield losses, which were further modeled as functions of weed size to understand weed competitiveness. Cotton lint yield reductions averaged 36 and 12%, with maximum distances of influence of 1.71 and 1.65 m for noogoora burr and fierce thornapple, respectively. Economic thresholds for control using hand hoeing were related to weed size. Thresholds for average-size weeds were one cocklebur in 195 m and one fierce thornapple in 73 m of cotton row.

Weed Science ◽  
1989 ◽  
Vol 37 (5) ◽  
pp. 688-694 ◽  
Author(s):  
Eric P. Castner ◽  
Don S. Murray ◽  
Neil M. Hackett ◽  
Laval M. Verhalen ◽  
David L. Weeks ◽  
...  

The effects of hogpotato interference on cotton and of the crop on the weed were measured under field conditions in four environments. Full-season interference from 105 ± 21 hogpotato plants/m2reduced cotton plant height by 14 to 44%. Conversely, weed dry weight was reduced 54% through full-season interference from cotton. Lint yield reductions in cotton ranged from 31 to 98% following full-season weed interference. Interference during the first 7 weeks of crop growth reduced lint yield by approximately 40%; however, interference after 7 weeks of weed-free maintenance did not affect lint yield. Interference reduced boll size in 3 of 4 yr, lint percent in 2 of 4, and boll number in the only year it was measured. Cotton fiber length, uniformity index, and micronaire were reduced by full-season interference in 1 of 2 yr; however, fiber strength was not affected in either year. Significant use of soil water by hogpotato occurred at 120 cm and deeper in the soil while cotton used water primarily in the upper 75 cm.


1989 ◽  
Vol 3 (2) ◽  
pp. 313-316 ◽  
Author(s):  
Michael S. Riffle ◽  
Don S. Murray ◽  
Laval M. Verhalen ◽  
David L. Weeks

The duration and intensity of unicorn-plant interference on lint yield of cotton were evaluated in the field. Random densities of 5.5 ± 1.1 unicorn-plant/m2reduced lint yield by 41 kg/ha or about 5% for each week that unicorn-plant was present. Interference by 4, 8, and 12 weeds/10 m row decreased yield by 22, 49, and 56 kg/ha, respectively, for each week of weed interference. Each 1 kg/ha of unicorn-plant dry weight reduced lint yield by 0.26 kg/ha. Linear regression of weed dry weight could be used to predict cotton lint yield changes regardless of duration or intensity of weed interference.


1996 ◽  
Vol 10 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Joy B. Rogers ◽  
Don S. Murray ◽  
Laval M. Verhalen ◽  
P. L. Claypool

Full-season interference and critical duration of early-season ivyleaf morningglory interference with cotton were measured in experiments at two Oklahoma locations. Densities ranging from 0 to 64 weeds/10 m of row were evaluated for their effects on cotton lint yield, fiber quality, and harvest efficiency. Analyses using linear-linear regression proved superior to linear, curvilinear, and linear-plateau models. Lint yield reductions of 36.9 kg/ha (or 5.9%) were recorded at Perkins for each weed/10 m up to 8.7. At densities greater than 8.7/10 m, yield was reduced an additional 3.0 kg/ha (0.5%) for each additional weed. At Chickasha, lint yield was reduced 29.7 kg/ha (or 3.9%) for each weed/10 m up to 9.0 with an additional lint loss of 3.6 kg/ha (0.7%) for each weed above the density of 9.0/10 m. Yield losses were over 80% before fiber length was also reduced. Mechanical harvest was not possible at densities above 8 weeds/10 m at Chickasha and above 16 weeds/10 m at Perkins. In critical duration experiments conducted at Perkins, lint yield was reduced 52.9 kg/ha (or 11.2%) for each week weed removal was delayed up to 9.5 wk. An additional 1.0 kg/ha (0.2%) was lost for each week of interference after 9.5 wk. At Chickasha, lint yield was reduced 49.0 kg/ha (or 7.8%) for each week of interference up to 11.0 wk with an additional loss of 1.2 kg/ha (0.2%) for each week thereafter.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Todd A. Baughman

Field studies were conducted during the 2001 and 2002 growing seasons in the Texas peanut growing regions to simulate residual concentrations of imazapic and imazethapyr in the soil and subsequent effects on cotton (Gossypium hirsutumL.). Simulated imazapic or imazethapyr rates included 0, 1/64X (1.09 g ai/ha), 1/32X (2.19 g ai/ha), 1/16X (4.38 g ai/ha), 1/8X (8.75 g ai/ha), 1/4X (17.5 g ai/ha), and 1/2X (35 g ai/ha) of the full labeled rate for peanut (Arachis hypogaeaL.) and incorporated prior to cotton planting. Cotton stunting with imazapic or imazethapyr was more severe at Denver City than other locations. All rates of imazapic and imazethapyr resulted in cotton stunting at Denver City while at Munday and Yoakum the 1/8X, 1/4X, and 1/2X rates of imazapic resulted in reduced cotton growth when compared with the untreated check. At all locations imazapic caused more stunted cotton than imazethapyr. Cotton lint yield was reduced by imazapic or imazethapyr at 1/4 X and 1/2 X rates at all locations when compared with the untreated check.


1986 ◽  
Vol 78 (3) ◽  
pp. 534-538 ◽  
Author(s):  
D. L. Kittock ◽  
R. A. Selley ◽  
C. J. Cain ◽  
B. B. Taylor

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 859 ◽  
Author(s):  
Aziz Khan ◽  
Jie Zheng ◽  
Daniel Kean Yuen Tan ◽  
Ahmad Khan ◽  
Kashif Akhtar ◽  
...  

Manipulation of planting density and choice of variety are effective management components in any cropping system that aims to enhance the balance between environmental resource availability and crop requirements. One-time fertilization at first flower with a medium plant stand under late sowing has not yet been attempted. To fill this knowledge gap, changes in leaf structural (stomatal density, stomatal length, stomata width, stomatal pore perimeter, and leaf thickness), leaf gas exchange, and chlorophyll fluorescence attributes of different cotton varieties were made in order to change the planting densities to improve lint yield under a new planting model. A two-year field evaluation was carried out on cotton varieties—V1 (Zhongmian-16) and V2 (J-4B)—to examine the effect of changing the planting density (D1, low, 3 × 104; D2, moderate, 6 × 104; and D3, dense, 9 × 104) on cotton lint yield, leaf structure, chlorophyll fluorescence, and leaf gas exchange attribute responses. Across these varieties, J-4B had higher lint yield compared with Zhongmian-16 in both years. Plants at high density had depressed leaf structural traits, net photosynthetic rate, stomatal conductance, intercellular CO2 uptake, quenching (qP), actual quantum yield of photosystem II (ΦPSII), and maximum quantum yield of PSII (Fv/Fm) in both years. Crops at moderate density had improved leaf gas exchange traits, stomatal density, number of stomata, pore perimeter, length, and width, as well as increased qP, ΦPSII, and Fv/Fm compared with low- and high-density plants. Improvement in leaf structural and functional traits contributed to 15.9%–10.7% and 12.3%–10.5% more boll m−2, with 20.6%–13.4% and 28.9%–24.1% higher lint yield averaged across both years, respectively, under moderate planting density compared with low and high density. In conclusion, the data underscore the importance of proper agronomic methods for cotton production, and that J-4B and Zhongmian-16 varieties, grown under moderate and lower densities, could be a promising option based on improved lint yield in subtropical regions.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 349
Author(s):  
Manuel Guzman ◽  
Luis Vilain ◽  
Tatiana Rondon ◽  
Juan Sanchez

Evaluation of sowing density is an important factor for achieving maximum yields without affecting other agronomic traits. Field experiments were conducted during three consecutive years (2008, 2009 and 2010) to determinate the effect of four sowing density (62,500; 83,333; 100,000 and 142,857 pl ha−1) on yields and its components of two cotton varieties, ‘Delta Pine 16′ and ‘SN-290′ in Venezuela. The traits evaluated were lint yield, boll weight, number of seeds per boll, 100-seed weight, and fiber content. Highly significant differences (p ≤ 0.01) were observed among genotypes, sowing density and their interactions for all traits. Sowing density was not affected by year factor. High lint yield was found in ‘SN-290′ (4216.2 kg ha−1) at 100,000 pl ha−1; and in ‘Delta Pine 16′ (3917.3 kg ha−1) at 83,333 pl ha−1. The highest sowing density (142,857 pl ha−1), decrease lint yield and yield components in the genotypes. The highest boll weight was obtained by ‘SN-290′ with 6.4 g in average. All sowing densities evaluated resulted in lint percentages above 40%. Cotton lint yield was positively correlated with all yield components. Our results indicate that highest lint yields could be obtained with sowing densities between 83,333 and 100,000 pl ha−1 depending upon varieties used across savannahs of Venezuela.


Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Matt W. Rowland ◽  
Don S. Murray ◽  
Laval M. Verhalen

Four field experiments were conducted in Oklahoma to measure full-season Palmer amaranth interference on cotton lint yield and fiber properties. Density of the weed ranged from 0 to 12 plants 10 m−1of row. Cotton lint yield vs. weed density fit a linear model for densities ⩽ 8 weeds row−1at Perkins and Chickasha in 1996 and at Alms in 1997. At Perkins in 1997, all densities fit a linear model. For each increase of 1 weed row−1, lint yield reductions were 62 kg ha−1(or 10.7%) and 58 kg ha−1(or 11.5%) at Perkins and at Chickasha in 1996, respectively. At Perkins and Alms in 1997, for each 1 weed row−1, lint yield was reduced 71 kg ha−1(or 5.9%) and 112 kg ha−1(or 8.7%), respectively. Lint yield vs. end-of-season weed volume fit a linear model except at Alms in 1997. For each increase of 1 m3of weed plot−1, cotton lint yield in 1996 was reduced by 1.6 and 1.5% at Perkins and Chickasha, respectively. In 1997 at Perkins and Altus (⩽ 6 weeds), each increase of 1 m3of weed plot−1reduced lint yield 1.6 and 2.3%, respectively. Lint yield vs. end-of-season weed biomass fit a linear model in all four experiments. Lint yield was reduced 5.2 to 9.3% for each increase of 1 kg of weed biomass plot−1. Fiber analyses revealed significant differences for micronaire (fiber fineness) among weed densities in two experiments, marginal significance in a third, and none in a fourth. An intermediate number of weeds often resulted in improved fiber micronaires in these environments. No other fiber properties were influenced by weed density.


Sign in / Sign up

Export Citation Format

Share Document