scholarly journals Bimodality and Lithium Abundance on the Upper Main Sequence of the Open Cluster NGC 752

1988 ◽  
Vol 132 ◽  
pp. 473-476
Author(s):  
J E Beckman ◽  
R. Rebolo

Spectra of resolution λ/Δλ∼2 ×104 and good S:N ratio are presented in the range containing the 7Li doublet at 6707 Å for 9 main sequence or slightly evolved stars in NGC 752 (age ∼2 ×109 years). We investigate the suggested main sequence bimodality using spectroscopic indications of binarity and high rotational velocity, as well as the Li abundance to supplement previous photometry.

Author(s):  
N Holanda ◽  
N Drake ◽  
W J B Corradi ◽  
F A Ferreira ◽  
F Maia ◽  
...  

Abstract We present the results of a chemical analysis of fast and anomalous rotator giants members of the young open cluster NGC 6124. For this purpose, we carried out abundances of the mixing sensitive species such as Li, C, N, Na and 12C/13C isotopic ratio, as well as other chemical species for a sample of four giants among the seven observed ones. This study is based on standard spectral analysis technique using high-resolution spectroscopic data. We also performed an investigation of the rotational velocity (v sin  i) once this sample exhibit abnormal values – giant stars commonly present rotational velocities of few km s−1. In parallel, we have been performed a membership study, making use of the third data release from ESA Gaia mission. Based on these data, we estimated a distance of d = 630 pc and an age of 178 Myr through isochrone fitting. After that procedure, we matched all the information raised and investigated the evolutionary stages and thermohaline mixing model through of spectroscopic Teff and log  g and mixing tracers, as 12C/13C and Na, of the studied stars. We derived a low mean metallicity of [Fe/H] = −0.13 ±0.05 and a modest enhancement of the elements created by the s-process such as Y, Zr, La, Ce, and Nd, which is in agreement of what has already been reported in the literature for young clusters. The giants analyzed have homogeneous abundances, except for lithium abundance [log  ε(Li)NLTE = 1.08±0.42] and this may be associated to a combination of mechanisms that act increasing or decreasing lithium abundances in stellar atmospheres.


2000 ◽  
Vol 198 ◽  
pp. 516-517
Author(s):  
Suzanne Talon ◽  
Corinne Charbonnel

We present the impact of meridional circulation and shear turbulence on the evolution of the lithium abundance at the surface of evolved stars originating from the hot side of the Li Dip. We show that our fully consistent treatment of the same hydrodynamical processes which can account for C and N anomalies in B type stars (Talon et al. 1997) and for the shape of the hot side of the Li dip in open clusters (Talon & Charbonnel 1998) also explains Li observations in stars with Teff higher than 7000K on the main sequence as well as in their evolved counterparts (see also Charbonnel & Talon 1999).


2013 ◽  
Vol 9 (S302) ◽  
pp. 100-101
Author(s):  
Aaron J. Juarez ◽  
Phillip A. Cargile ◽  
David J. James ◽  
Keivan G. Stassun

AbstractIn this project, we investigate the effects of magnetic activity on the Lithium Depletion Boundary (LDB) to recalibrate the measured ages for star clusters, using the open cluster Blanco 1 as a pilot study. We apply the LDB technique on low-mass Pre-Main-Sequence (PMS) stars to derive an accurate age for Blanco 1, and we consider the effect of magnetic activity on this inferred age. Although observations have shown that magnetic activity directly affects stellar radius and temperature, most PMS models do not include the effects of magnetic activity on stellar properties. Since the lithium abundance of a star depends on its radius and temperature, we expect that LDB ages are affected by magnetic activity. After empirically accounting for the effects of magnetic activity, we find the age of Blanco 1 to be ~100 Myr, which is ~30 Myr younger than the standard LDB age of ~130 Myr.


2004 ◽  
Vol 215 ◽  
pp. 127-135
Author(s):  
John R. Stauffer

Bob Kraft (1967) showed that there is a break in the mean rotational velocity of stars at about spectral type F5, with more massive stars generally being rapid rotators and less massive stars generally being slow rotators. He also showed that in the late F spectral range at least, there is an evolution with time on the main sequence, with younger F stars being more rapidly rotating. Kraft's observational database extended only to about one solar mass due to the sensitivy limitations of photographic plates. Modern observations of low mass stars in open clusters, extending down in mass to nearly the hydrogen burning mass limit in a few clusters, have since been used to show that rotational spindown is the common feature of stars less massive than the sun but that there is a wide spread in rotational velocities when stars arrive on the ZAMS. I will review what is known empirically concerning the rotational velocities of intermediate and low mass field stars, using the open cluster data to place the field star observations in context.


2002 ◽  
Vol 12 ◽  
pp. 680-683 ◽  
Author(s):  
Michel Grenon

AbstractThe Hipparcos parallaxes allow us to revisit photometric calibrations in terms ofMvand to evaluate the effects of the overall metallicity across the HR-diagram. For evolved stars the spread in mass remains the major and irreducible source of errors in the photometricMv. If the relative locations of open cluster main-sequences are fully explained by the ∆Mvversus ∆[M/H] relation, the residual scatter in the lower main sequence appears due to additional parameters such as rotation or gravitational settling of the heavy elements. These cannot readily be studied by a purely photometric approach.


2016 ◽  
Vol 831 (2) ◽  
pp. 116 ◽  
Author(s):  
Beomdu Lim ◽  
Hwankyung Sung ◽  
Jinyoung S. Kim ◽  
Michael S. Bessell ◽  
Narae Hwang ◽  
...  

1998 ◽  
Vol 11 (1) ◽  
pp. 566-566
Author(s):  
C. Jaschek ◽  
A.E. Gómez

We have analysed the standards of the MK system in the B0-F5 spectral region with the help of Hipparcos parallaxes, using only stars for which the error on the absolute magnitude is ≤ 0.3 mag. The sample stars (about one hundred) were scrutinized for companions and for interstellar extinction. We find that the main sequence is a wide band and that, although in general giants and dwarfs have different absolute magnitudes, the separation between luminosity class V and III is not clear. We conclude that there is no strict relation between luminosity class and absolute magnitude. The relation is only a statistical one and has a large intrinsic dispersion. We have analysed similarly the system of standards defined by Garrison and Gray (1994) separating low and high rotational velocity standards. We find similar effects as in the original MK system.


1992 ◽  
Vol 151 ◽  
pp. 471-472
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A. E. Milone ◽  
Robert J. Davis

In 1971 Roger Griffin and Jim Gunn began monitoring the radial velocities of most of the members brighter than the main-sequence turnoff in the old open cluster M67, primarily using the 200-inch Hale Telescope. In 1982 the torch was passed to Dave Latham and Bob Mathieu, who began monitoring many of the same stars with the 1.5-meter Tillinghast Reflector and the Multiple-Mirror Telescope on Mt. Hopkins. We have successively combined these two sets of data, plus some additional CORAVEL velocities kindly provided by Michel Mayor, to obtain 20 years of time coverage (e.g. Mathieu et al. 1986). Among the stars brighter than magnitude V = 12.7 we have already published orbits for 22 spectroscopic binaries (Mathieu et al. 1990). At Mt. Hopkins an extension of this survey to many of the cluster members down to magnitude V = 15.5 has already yielded thirteen additional orbital solutions, with the promise of many more to come.


2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


Sign in / Sign up

Export Citation Format

Share Document