scholarly journals Photometric Calibrations after HIPPARCOS or: The Fine Structure of the HR-Diagram Revealed

2002 ◽  
Vol 12 ◽  
pp. 680-683 ◽  
Author(s):  
Michel Grenon

AbstractThe Hipparcos parallaxes allow us to revisit photometric calibrations in terms ofMvand to evaluate the effects of the overall metallicity across the HR-diagram. For evolved stars the spread in mass remains the major and irreducible source of errors in the photometricMv. If the relative locations of open cluster main-sequences are fully explained by the ∆Mvversus ∆[M/H] relation, the residual scatter in the lower main sequence appears due to additional parameters such as rotation or gravitational settling of the heavy elements. These cannot readily be studied by a purely photometric approach.

1988 ◽  
Vol 132 ◽  
pp. 473-476
Author(s):  
J E Beckman ◽  
R. Rebolo

Spectra of resolution λ/Δλ∼2 ×104 and good S:N ratio are presented in the range containing the 7Li doublet at 6707 Å for 9 main sequence or slightly evolved stars in NGC 752 (age ∼2 ×109 years). We investigate the suggested main sequence bimodality using spectroscopic indications of binarity and high rotational velocity, as well as the Li abundance to supplement previous photometry.


1992 ◽  
Vol 151 ◽  
pp. 471-472
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A. E. Milone ◽  
Robert J. Davis

In 1971 Roger Griffin and Jim Gunn began monitoring the radial velocities of most of the members brighter than the main-sequence turnoff in the old open cluster M67, primarily using the 200-inch Hale Telescope. In 1982 the torch was passed to Dave Latham and Bob Mathieu, who began monitoring many of the same stars with the 1.5-meter Tillinghast Reflector and the Multiple-Mirror Telescope on Mt. Hopkins. We have successively combined these two sets of data, plus some additional CORAVEL velocities kindly provided by Michel Mayor, to obtain 20 years of time coverage (e.g. Mathieu et al. 1986). Among the stars brighter than magnitude V = 12.7 we have already published orbits for 22 spectroscopic binaries (Mathieu et al. 1990). At Mt. Hopkins an extension of this survey to many of the cluster members down to magnitude V = 15.5 has already yielded thirteen additional orbital solutions, with the promise of many more to come.


2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


2009 ◽  
Vol 5 (S268) ◽  
pp. 387-394
Author(s):  
Sylvie Vauclair

AbstractAsteroseismology is a powerful tool to derive stellar parameters, including the helium content and internal helium gradients, and the macroscopic motions which can lead to lithium, beryllium, and boron abundance variations. Precise determinations of these parameters need deep analyses for each individual stars. After a general introduction on helio and asteroseismology, I first discuss the solar case, the results which have been obtained in the past two decades, and the crisis induced by the new determination of the abundances of heavy elements. Then I discuss asteroseismology in relation with light element abundances, especially for the case of main sequence stars.


1980 ◽  
Vol 85 ◽  
pp. 357-359 ◽  
Author(s):  
Martha H. Liller

It is becoming increasingly clear that no (or only one or two) binaries occur among the evolved stars in globular clusters. Therefore, if binaries exist at all in these systems, they must be found on or near the main sequence. I have chosen 6 clusters to search for faint eclipsing binaries by the following criteria: (1)the apparent visual distance modulus (Harris 1976) (m-M)V ≤ 14.5 mag;(2)the Peterson and King (1975) concentration class c ≤ 1.5, so that the search can be conducted near or at the cluster center where binaries would most likely be found; and(3)the galactic latitude is sufficiently large to avoid problems of extreme contamination by field stars. The clusters thus chosen are NGC3201, 5139 (Omega Cen), 6121 (M4), 6218 (M12), 6254 (M10), and 6809 (M55). The plate material obtained on three nights with the 4-m telescope at CTIO in 1979, consists of seven to nine plates of each cluster on IIIa-F emulsion with an RG610 filter; the search is being conducted with a blink microscope.


1997 ◽  
Vol 189 ◽  
pp. 355-360
Author(s):  
Charles R. Proffitt

Comparisons between models of the solar interior and sound speed profiles derived from inversions of helioseismic data have demonstrated that it is essential to include the effects of gravitational settling when calculating the structure and evolution of the Sun. Including settling should also be necessary for models of metal poor main-sequence stars and results in a substantial reduction in the ages derived for globular clusters.In many cases it is clear that competing hydrodynamic processes, such as mass loss or rotationally driven mixing, will limit the effectiveness of gravitational separation of chemical elements. However, the quantitative details and even the relative importance of the different processes in various types of stars remains poorly understood.


1992 ◽  
Vol 135 ◽  
pp. 155-157 ◽  
Author(s):  
David W. Latham ◽  
Robert D. Mathieu ◽  
Alejandra A.E. Milone ◽  
Robert J. Davis

AbstractFor almost 400 members of M67 we have accumulated about 5,000 precise radial velocities. Already we have orbital solutions for more than 32 spectroscopic binaries in M67. Many of these orbits were derived by combining the Palomar and CfA observations, thus extending the time coverage to more than 20 years. The distribution of eccentricity versus period shows evidence for tidal circularization on the main sequence. The transition from circular orbits is fairly clean. Excluding the blue stragglers, the first eccentric orbit has a period of 11.0 days, while the last circular orbit has a period of 12.4 days. For longer periods the distribution of eccentricity is the same as for field stars. The blue straggler S1284 has an eccentric orbit despite its short period of 4.2 days.


2020 ◽  
Vol 496 (2) ◽  
pp. 1355-1368
Author(s):  
J-L Halbwachs ◽  
F Kiefer ◽  
Y Lebreton ◽  
H M J Boffin ◽  
F Arenou ◽  
...  

ABSTRACT Double-lined spectroscopic binaries (SB2s) are one of the main sources of stellar masses, as additional observations are only needed to give the inclinations of the orbital planes in order to obtain the individual masses of the components. For this reason, we are observing a selection of SB2s using the SOPHIE spectrograph at the Haute-Provence observatory in order to precisely determine their orbital elements. Our objective is to finally obtain masses with an accuracy of the order of one per cent by combining our radial velocity (RV) measurements and the astrometric measurements that will come from the Gaia satellite. We present here the RVs and the re-determined orbits of 10 SB2s. In order to verify the masses, we will derive from Gaia, we obtained interferometric measurements of the ESO VLTI for one of these SB2s. Adding the interferometric or speckle measurements already published by us or by others for four other stars, we finally obtain the masses of the components of five binary stars, with masses ranging from 0.51 to 2.2 solar masses, including main-sequence dwarfs and some more evolved stars whose location in the HR diagram has been estimated.


2004 ◽  
Vol 215 ◽  
pp. 170-176
Author(s):  
S. Meibom ◽  
R. D. Mathieu

We present an ongoing study on tidal interactions in late-type close binary stars. New results on tidal circularization are combined with existing data to test and constrain theoretical predictions of tidal circularization in the pre-main-sequence (PMS) phase and throughout the main-sequence phase of stellar evolution. Current data suggest that tidal circularization during the PMS phase sets the tidal cutoff period for binary populations younger than ~ 1 Gyr. Binary populations older than ~ 1 Gyr show increasing tidal cutoff periods with age, consistent with active main-sequence tidal circularization.


2012 ◽  
Vol 8 (S289) ◽  
pp. 138-144 ◽  
Author(s):  
Wolfgang Gieren ◽  
Jesper Storm ◽  
Nicolas Nardetto ◽  
Alexandre Gallenne ◽  
Grzegorz Pietrzyński ◽  
...  

AbstractRecent progress on Baade–Wesselink (BW)-type techniques to determine the distances to classical Cepheids is reviewed. Particular emphasis is placed on the near-infrared surface-brightness (IRSB) version of the BW method. Its most recent calibration is described and shown to be capable of yielding individual Cepheid distances accurate to 6%, including systematic uncertainties. Cepheid distances from the IRSB method are compared to those determined from open cluster zero-age main-sequence fitting for Cepheids located in Galactic open clusters, yielding excellent agreement between the IRSB and cluster Cepheid distance scales. Results for the Cepheid period–luminosity (PL) relation in near-infrared and optical bands based on IRSB distances and the question of the universality of the Cepheid PL relation are discussed. Results from other implementations of the BW method are compared to the IRSB distance scale and possible reasons for discrepancies are identified.


Sign in / Sign up

Export Citation Format

Share Document