scholarly journals Very-High-Eccentricity Librations at Some Higher Order Resonances

1992 ◽  
Vol 152 ◽  
pp. 153-158 ◽  
Author(s):  
J.C. Klafke ◽  
S. Ferraz-Mello ◽  
T. Michtchenko

Motions near the 3:1, 4:1 and 5:2 resonances with Jupiter are studied by means of numerical integrations of a semi-analytically averaged Sun-Jupiter-asteroid planar problem. In order to have a model including the very-high-eccentricity regions of the phase space, we adopted a set of local expansions of the disturbing potential, adequate to perform the numerical exploration of regions in the phase space with eccentricities higher than 0.9 (Ferraz-Mello and Klafke, 1991). Individual solutions and qualitative results thus obtained are completely reproduced by numerical integration of the complete equations by filtering off the short-period components of these solutions.

Author(s):  
Andrea Vannini ◽  
Luca Paoli ◽  
Riccardo Fedeli ◽  
Sharon Kwambai Kangogo ◽  
Massimo Guarnieri ◽  
...  

AbstractIn this study, the release of Cu2+ and Zn2+ was investigated and modeled in the epiphytic lichen Evernia prunastri. Samples were incubated with solutions containing these metals at ecologically relevant concentrations (10 and 100 μM) and then transplanted to a remote area and retrieved after 1, 2, 3, 6, 12, and 18 months. The results showed that, after 12 months, all samples faced similar metal reductions of ca. 80–85%, but after this period, all the involved processes seem to be no longer capable of generating further reductions. These results suggest that the lichen E. prunastri can provide information about environmental improvements after exposure to high or very high pollution levels in a relatively short period of time.


2001 ◽  
Vol 09 (04) ◽  
pp. 1259-1286 ◽  
Author(s):  
MIGUEL R. VISBAL ◽  
DATTA V. GAITONDE

A high-order compact-differencing and filtering algorithm, coupled with the classical fourth-order Runge–Kutta scheme, is developed and implemented to simulate aeroacoustic phenomena on curvilinear geometries. Several issues pertinent to the use of such schemes are addressed. The impact of mesh stretching in the generation of high-frequency spurious modes is examined and the need for a discriminating higher-order filter procedure is established and resolved. The incorporation of these filtering techniques also permits a robust treatment of outflow radiation condition by taking advantage of energy transfer to high-frequencies caused by rapid mesh stretching. For conditions on the scatterer, higher-order one-sided filter treatments are shown to be superior in terms of accuracy and stability compared to standard explicit variations. Computations demonstrate that these algorithmic components are also crucial to the success of interface treatments created in multi-domain and domain-decomposition strategies. For three-dimensional computations, special metric relations are employed to assure the fidelity of the scheme in highly curvilinear meshes. A variety of problems, including several benchmark computations, demonstrate the success of the overall computational strategy.


1971 ◽  
Vol 10 ◽  
pp. 40-51
Author(s):  
Paul E. Nacozy

AbstractThe numerical integration of systems of differential equations that possess integrals is often approached by using the integrals to reduce the number of degrees of freedom or by using the integrals as a partial check on the resulting solution, retaining the original number of degrees of freedom.Another use of the integrals is presented here. If the integrals have not been used to reduce the system, the solution of a numerical integration may be constrained to remain on the integral surfaces by a method that applies corrections to the solution at each integration step. The corrections are determined by using linearized forms of the integrals in a least-squares procedure.The results of an application of the method to numerical integrations of a gravitational system of 25-bodies are given. It is shown that by using the method to satisfy exactly the integrals of energy, angular momentum, and center of mass, a solution is obtained that is more accurate while using less time of calculation than if the integrals are not satisfied exactly. The relative accuracy is ascertained by forward and backward integrations of both the corrected and uncorrected solutions and by comparison with more accurate integrations using reduced step-sizes.


2020 ◽  
Author(s):  
Rosa Maria Badani Prado ◽  
Satish Mishra ◽  
Buckston Morgan ◽  
Rangana Wijayapala ◽  
Seyed Meysam Hashemnejad ◽  
...  

Many biological species apply the power amplification mechanism for locomotion, feeding, and protection. In power amplification, a biological system rapidly releases stored-energy by achieving a very high velocity over a short period of time, resulting in high power output. Such power amplification allows insects such as locust to jump and Mantis shrimp to kill prey by its appendage strike. Biological elastomeric polymers such as resilin play a vital role in the power amplification process because of their high stretchability and resilience. In synthetic materials, although<br>crosslinked rubbers display high stretchability and resilience, such is difficult to achieve in the water-containing systems such as in hydrogels, commonly considered materials for mimicking biological tissues. Here, we have used a simple free-radical polymerization of acrylic acid (AAc), methacrylamide (MAAm), and polypropylene glycol diacrylate (PPGDA) to obtain hydrogels. In these gels, the polymerized AAc and MAAm act as hydrophilic blocks and PPG as hydrophobic, and the gel structure resemble that of resilin consisting of hydrophilic and hydrophobic components. The bioinspired gels display very high stretchability, as high as eight times the original length, and greater than 90% resilience. In addition, the gel samples can reach a retraction velocity of 16 m/s with an acceleration of 4X10^3 m/s2. These values are similar or better than those observed in water containing biological systems, such as appendage strikes in Mantis shrimp, etc. To the best of our knowledge, such performance has not been reported in the<br>literature for any water containing networks.


2002 ◽  
Vol 305 (3-4) ◽  
pp. 93-99 ◽  
Author(s):  
J Shamanna ◽  
B Talukdar ◽  
U Das

Author(s):  
Mogege David Mosimege

Research in Indigenous Knowledge Systems (IKS) in South Africa has grown at a very high pace in a relatively short period of time. The growth thereof has presented researchers and the knowledge holders with challenges that have never faced them in the same way before. It has necessitated a review of how researchers interact with those who hold the knowledge and has required that protection mechanisms be implemented to safeguard the misuse and misappropriation of the indigenous knowledge. This Chapter outlines the focus on IKS in South Africa since 1995 and reflects on the challenges related to this focus. Specifically the Chapter looks at the challenges related to the recognition of knowledge holders, the ethical issues facing both researchers and knowledge holders, and the protocols that have been designed and used in South Africa and other places. It concludes by indicating the challenges that still remain and how these can be explored further by the research community.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401881990
Author(s):  
Chigbogu Godwin Ozoegwu

The vibration of the engineering systems with distributed delay is governed by delay integro-differential equations. Two-stage numerical integration approach was recently proposed for stability identification of such oscillators. This work improves the approach by handling the distributed delay—that is, the first-stage numerical integration—with tensor-based higher order numerical integration rules. The second-stage numerical integration of the arising methods remains the trapezoidal rule as in the original method. It is shown that local discretization error is of order [Formula: see text] irrespective of the order of the numerical integration rule used to handle the distributed delay. But [Formula: see text] is less weighted when higher order numerical integration rules are used to handle the distributed delay, suggesting higher accuracy. Results from theoretical error analyses, various numerical rate of convergence analyses, and stability computations were combined to conclude that—from application point of view—it is not necessary to increase the first-stage numerical integration rule beyond the first order (trapezoidal rule) though the best results are expected at the second order (Simpson’s 1/3 rule).


Sign in / Sign up

Export Citation Format

Share Document