scholarly journals Thermal Gradients in the Outer Lunar Layers

1972 ◽  
Vol 47 ◽  
pp. 372-376
Author(s):  
J. A. Bastin ◽  
S. J. Pandya ◽  
D. A. Upson

During the next Apollo mission Apollo 15, it is planned to fix thermocouples at various depths up to 3 m below the lunar surface. It seems likely that the resulting temperature measurements will show a positive temperature differential with depth resulting from a net outward heat flux. It is the purpose of this paper to examine experiments already carried out which indicate a temperature gradient. Since the thermal flux is of direct importance in fundamental problems of lunar origin and the nature of the lunar interior, the relation between this quantity and the temperature gradient will be examined.

1971 ◽  
Vol 45 (4) ◽  
pp. 759-768 ◽  
Author(s):  
M. M. R. Williams

The effect of a temperature gradient in a gas inclined at an angle to a boundary wall has been investigated. For an infinite half-space of gas it is found that, in addition to the conventional temperature slip problem, the component of the temperature gradient parallel to the wall induces a net mass flow known as thermal creep. We show that the temperature slip and thermal creep effects can be decoupled and treated quite separately.Expressions are obtained for the creep velocity and heat flux, both far from and at the boundary; it is noted that thermal creep tends to reduce the effective thermal conductivity of the medium.


2016 ◽  
Vol 19 (01) ◽  
pp. 181-191 ◽  
Author(s):  
F. J. Argüelles-Vivas ◽  
T.. Babadagli

Summary Analytical models were developed for non-isothermal gas/heavy-oil gravity drainage and water-heavy oil displacements in round capillary tubes including the effects of a temperature gradient throughout the system. By use of the model solution for a bundle of capillaries, relative permeability curves were generated at different temperature conditions. The results showed that water/gas-heavy oil interface location, oil-drainage velocity, and production rate depend on the change of oil properties with temperature. The displacement of heavy oil by water or gas was accelerated under a positive temperature gradient, including the spontaneous imbibition of water. Relative permeability curves were greatly affected by temperature gradient and showed significant changes compared with the curves at constant temperature. Clarifications were made as to the effect of variable temperature compared with the constant (but high) temperatures throughout the bundle of capillaries.


2020 ◽  
Vol 45 (4) ◽  
pp. 319-332
Author(s):  
Xiaoyu Chen ◽  
Ruquan Liang ◽  
Yong Wang ◽  
Ziqi Xia ◽  
Lichun Wu ◽  
...  

AbstractThe effect of the temperature gradient on the Soret coefficient in n-pentane/n-decane (n-C5/n-C10) mixtures was investigated using non-equilibrium molecular dynamics (NEMD) with the heat exchange (eHEX) algorithm. n-Pentane/n-decane mixtures with three different compositions (0.25, 0.5, and 0.75 mole fractions, respectively) and the TraPPE-UA force field were used in computing the Soret coefficient ({S_{T}}) at 300 K and 1 atm. Added/removed heat quantities (ΔQ) of 0.002, 0.004, 0.006, 0.008, and 0.01 kcal/mol were employed in eHEX processes in order to study the effect of different thermal gradients on the Soret coefficient. Moreover, a phenomenological description was applied to discuss the mechanism of this effect. Present results show that the Soret coefficient values firstly fluctuate violently and then become increasingly stable with increasing ΔQ (especially in the mixture with a mole fraction of 0.75), which means that ΔQ has a smaller effect on the Soret coefficient when the temperature gradient is higher than a certain thermal gradient. Thus, a high temperature gradient is recommended for calculating the Soret coefficient under the conditions that a linear response and constant phase are ensured in the system. In addition, the simulated Soret coefficient obtained at the highest ΔQ within three different compositions is in great agreement with experimental data.


Author(s):  
S Ganesh ◽  
M Mishra

Abstract Thermal systems have traditionally been modeled via Euclideanized space by analytical continuation of time to an imaginary time. We extend the concept to static thermal gradients by recasting the temperature variation as a variation in the Euclidean metric. We apply this prescription to determine the Quark anti-Quark potential in a system with thermal gradient. A naturally occurring QCD medium with thermal gradients is a Quark Gluon Plasma (QGP). However, the QGP evolves in time. Hence, we use a quasi-stationary approximation, which is applicable only if the rate of time evolution is slow. Hence the application of our proposal to a Quark anti-Quark potential in QGP can be seen as a step towards a more exact theory which would incorporate time varying thermal gradients. The effect of a static temperature gradient on the Quark anti-Quark potential is analyzed using a gravity dual model. A non-uniform black string metric is developed, by perturbing the Schwarzchild metric, which allows to incorporate the temperature gradient in the dual AdS space. Finally, an expression for the Quark anti-Quark potential, in the presence of a static temperature gradient, is derived.


1984 ◽  
Vol 21 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Garry K. C. Clarke ◽  
Sam G. Collins ◽  
David E. Thompson

Temperature measurements in a subpolar surge-type glacier reveal a distinctive thermal structure associated with the boundary between the ice reservoir and receiving areas. In the receiving area the glacier is cold based, but bottom temperature has increased as much as 0.5 °C between 1981 and 1982, and the basal heat flux is roughly 10 times the expected geothermal flux. Water percolation through permeable subglacial material is the probable energy source. Deformation of the substrate could destroy this drainage system and trigger a surge.


1995 ◽  
Vol 09 (09) ◽  
pp. 1113-1122 ◽  
Author(s):  
LIQIU WANG

The symmetry and positive definiteness of thermal conductivity tensor K are used to derive some properties of heat flux functions ɸi (i=0, 1, 2). All ɸi are shown to be real-valued. Both ɸ0 and ɸ2 are found to be positive definite, and ɸ1 is constrained between −(ɸ0 + ɸ2) and (ɸ0 + ɸ2). By assuming heat flux vector q to be a linear function of temperature gradient ∇θ and velocity strain tensor D, ɸi reduce to three coefficients which are independent of D and ∇θ.


2017 ◽  
Vol 34 (11) ◽  
pp. 2533-2546 ◽  
Author(s):  
Johannes Becherer ◽  
James N. Moum

AbstractA scheme for significantly reducing data sampled on turbulence devices (χpods) deployed on remote oceanographic moorings is proposed. Each χpod is equipped with a pitot-static tube, two fast-response thermistors, a three-axis linear accelerometer, and a compass. In preprocessing, voltage means, variances, and amplitude of the subrange (inertial-convective subrange of the turbulence) of the voltage spectrum representing the temperature gradient are computed. Postprocessing converts voltages to engineering units, in particular mean flow speed (and velocity), temperature, temperature gradient, and the rate of destruction of the temperature variance χ from which other turbulence quantities, such as heat flux, are derived. On 10-min averages, this scheme reduces the data by a factor of roughly 24 000 with a small (5%) low bias compared to complete estimates using inertial-convective subrange scaling of calibrated temperature gradient spectra.


Sign in / Sign up

Export Citation Format

Share Document