scholarly journals The Properties of Extragalactic X-Ray Sources from Visible Light Observations

1973 ◽  
Vol 55 ◽  
pp. 184-198
Author(s):  
Wallace L. W. Sargent

We describe the optical properties of the radio galaxy NGC 5128, the Seyfert galaxy NGC 4151 and the QSO 3C 273 all of which appear to be point sources of X-rays. We emphasize how the X-ray observations, particularly the low energy absorption cutoff, may help us to understand the detailed structure and source of energy in these diverse objects.The clusters of galaxies in Virgo, Perseus, Coma and Centaurus, all associated with extended X-ray sources are described. They have diverse shapes, central concentrations and galactic populations, but all contain a radio galaxy and, in several cases, a low frequency radio halo around it. It is concluded that the X-ray emission is likely to be non-thermal in origin.

2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


Author(s):  
L Hernández-García ◽  
F Panessa ◽  
L Bassani ◽  
G Bruni ◽  
F Ursini ◽  
...  

Abstract Mrk 1498 is part of a sample of galaxies with extended emission line regions (extended outwards up to a distance of ∼7 kpc) suggested to be photo-ionized by an AGN that has faded away or that is still active but heavily absorbed. Interestingly, the nucleus of Mrk 1498 is at the center of two giant radio lobes with a projected linear size of 1.1 Mpc. Our multi-wavelength analysis reveals a complex nuclear structure, with a young radio source (Giga-hertz Peaked Spectrum) surrounded by a strong X-ray nuclear absorption, a mid-infrared spectrum that is dominated by the torus emission, plus a circum-nuclear extended emission in the [OIII] image (with radius of ∼ 1 kpc), most likely related to the ionization of the AGN, aligned with the small and large scale radio jet and extended also at X-rays. In addition a large-scale extended emission (up to ∼ 10 kpc) is only visible in [OIII]. These data show conclusive evidence of a heavily absorbed nucleus and has recently restarted its nuclear activity. To explain its complexity, we propose that Mrk 1498 is the result of a merging event or secular processes, such as a minor interaction, that has triggered the nuclear activity and produced tidal streams. The large-scale extended emission that gives place to the actual morphology could either be explained by star formation or outflowing material from the AGN.


1997 ◽  
Vol 180 ◽  
pp. 214-215 ◽  
Author(s):  
Gail M. Conway ◽  
You-Hua Chu

X-ray emission from planetary nebulae (PNe) may originate from two sources: central stars which are 100,000–200,000 K will emit soft X-rays, and shocked fast stellar winds reaching 106–107 K will emit harder X-rays. The former are point sources, while the shocked winds are expected to be extended sources emitting continuously out to the inner wall of the visible nebular shell (Weaver et al. 1977; Wrigge & Wendker 1996).


1973 ◽  
Vol 55 ◽  
pp. 171-183 ◽  
Author(s):  
Edwin M. Kellogg

Data from the UHURU satellite have provided a list of more than forty high latitude sources (|b| > 20°). X-rays have been detected from among the nearest normal galaxies, giant radio galaxies, Seyferts, QSOs and clusters of galaxies. The cluster sources appear to be extended by several hundred kiloparsecs as well as being very luminous. These cluster sources have systematic differences in their X-ray spectra from individual galaxies.About twenty sources are not reliably identified so far. A few of these are located near undistinguished 3C or MSH radio sources. The rest are either located near distant clusters or undistinguished bright galaxies, or are too far south, so that we have not sufficient optical data to allow a thorough search for possible association with clusters or unusual individual galaxies.The luminosity function for weak, high latitude X-ray sources is determined, and the contribution of sources just below the UHURU threshold of detectability to observed fluctuations in the diffuse X-ray background is evaluated. The total contribution of all observed types of extragalactic sources to the X-ray background is estimated.


Only a few extragalactic objects have been studied in the y-ray region of the spectrum. At high energies the COS-B experiment detected emission from the quasar 3C273 while at lower energies the results indicate that the emission from the Seyfert galaxy NGC 4151 is variable. A similar variability may also account for the conflicting reports of line emission from the radio galaxy Cen A. The implication of these and other observations in relation to the possible physical conditions in the nuclei of active galaxies.


1972 ◽  
Vol 8 (1) ◽  
pp. 7-20 ◽  
Author(s):  
W. H. Bostick ◽  
V. Nardi ◽  
W. Prior

The intensity of X-ray sources in a focused deuterium plasma produced by a coaxial accelerator has been analysed as a function of position, X-ray energy and time of emission. The X-ray source in the axial region can be resolved (by micro- densitometer readings on X-ray pinhole camera films) as a sequence of small sources (linear dimension ∼ 0.1–0.3 mm) of hard radiation ≳ 2 ke V inside a more diffused source (cylindrical region of 1–4mm diameter) of softer X-rays. In each discharge the point sources are distributed for the most part in the general axial region of the discharge and two or more sources with different radial positions can be frequently observed for one specific value of the axial co-ordinate. Images of localized X-ray sources are also observed in the off-axis halo region. Multiple repinching of the axial plasma column or emission from metal-vapour clouds (by anode bombardment) can be ruled out in this experiment (hollow central electrode, or anode, radius 3·4 cm). The source multiplicity can be related to a complex (filamentary) structure of the plasma.


2020 ◽  
Vol 501 (1) ◽  
pp. 576-586
Author(s):  
D N Hoang ◽  
T W Shimwell ◽  
E Osinga ◽  
A Bonafede ◽  
M Brüggen ◽  
...  

ABSTRACT Radio haloes are extended (∼Mpc), steep spectrum sources found in the central region of dynamically disturbed clusters of galaxies. Only a handful of radio haloes have been reported to reside in galaxy clusters with a mass $M_{500}\lesssim 5\times 10^{14}\, \mathrm{ M}_\odot$. In this paper, we present a LOw Frequency ARray (LOFAR) 144 MHz detection of a radio halo in the galaxy cluster Abell 990 with a mass of $M_{500}=(4.9\pm 0.3)\times 10^{14}\, \mathrm{ M}_\odot$. The halo has a projected size of ${\sim} 700\, {\rm kpc}$ and a flux density of $20.2\pm 2.2\, {\rm mJy}$ or a radio power of $1.2\pm 0.1\times 10^{24}\, {\rm W\, Hz}^{-1}$ at the cluster redshift (z = 0.144) that makes it one of the two haloes with the lowest radio power detected to date. Our analysis of the emission from the cluster with Chandra archival data using dynamical indicators shows that the cluster is not undergoing a major merger but is a slightly disturbed system with a mean temperature of $5\, {\rm keV}$. The low X-ray luminosity of $L_{\mathrm{ X}}=(3.66\pm 0.08)\times 10^{44}\, {\rm erg\, s}^{-1}$ in the 0.1–2.4 keV band implies that the cluster is one of the least luminous systems known to host a radio halo. Our detection of the radio halo in Abell 990 opens the possibility of detecting many more haloes in poorly explored less massive clusters with low-frequency telescopes such as LOFAR, Murchison Widefield Array (MWA, Phase II), and upgraded Giant Metrewave Radio Telescope (uGMRT).


2020 ◽  
Vol 492 (3) ◽  
pp. 3156-3168
Author(s):  
Wenhao Liu ◽  
Ming Sun ◽  
Paul E J Nulsen ◽  
Diana M Worrall ◽  
Mark Birkinshaw ◽  
...  

ABSTRACT We present results from a deep (174 ks) Chandra observation of the FR-II radio galaxy 3C 220.1, the central brightest cluster galaxy (BCG) of a kT ∼ 4 keV cluster at z = 0.61. The temperature of the hot cluster medium drops from ∼5.9 to ∼3.9 keV at ∼35 kpc radius, while the temperature at smaller radii may be substantially lower. The central active galactic nucleus (AGN) outshines the whole cluster in X-rays, with a bolometric luminosity of 2.0 × 1046 erg s−1 (∼10 per cent of the Eddington rate). The system shows a pair of potential X-ray cavities ∼35 kpc east and west of the nucleus. The cavity power is estimated within the range of 1.0 × 1044 and 1.7 × 1045 erg s−1, from different methods. The X-ray enhancements in the radio lobes could be due to inverse Compton emission, with a total 2–10 keV luminosity of ∼8.0 × 1042 erg s−1. We compare 3C 220.1 with other cluster BCGs, including Cygnus A, as there are few BCGs in rich clusters hosting an FR-II galaxy. We also summarize the jet power of FR-II galaxies from different methods. The comparison suggests that the cavity power of FR-II galaxies likely underestimates the jet power. The properties of 3C 220.1 suggest that it is at the transition stage from quasar-mode feedback to radio-mode feedback.


2019 ◽  
Vol 632 ◽  
pp. A26 ◽  
Author(s):  
R. Gilli ◽  
M. Mignoli ◽  
A. Peca ◽  
R. Nanni ◽  
I. Prandoni ◽  
...  

We report the discovery of a galaxy overdensity around a Compton-thick Fanaroff–Riley type II (FRII) radio galaxy at z = 1.7 in the deep multiband survey around the z = 6.3 quasi-stellar object (QSO) SDSS J1030+0524. Based on a 6 h VLT/MUSE and on a 4 h LBT/LUCI observation, we identify at least eight galaxy members in this structure with spectroscopic redshift z = 1.687 − 1.699, including the FRII galaxy at z = 1.699. Most members are distributed within 400 kpc from the FRII core. Nonetheless, the whole structure is likely much more extended, as one of the members was serendipitously found at ∼800 kpc projected separation. The classic radio structure of the FRII itself extends for ∼600 kpc across the sky. Most of the identified overdensity members are blue, compact galaxies that are actively forming stars at rates of ∼8–60 M⊙ yr−1. For the brightest of them, a half-light radius of 2.2 ± 0.8 kpc at 8000 Å rest-frame was determined based on adaptive optics-assisted observations with LBT/SOUL in the Ks band. We do not observe any strong galaxy morphological segregation or concentration around the FRII core. This suggests that the structure is far from being virialized and likely constitutes the progenitor of a local massive galaxy group or cluster caught in its main assembly phase. Based on a 500 ks Chandra ACIS-I observation, we found that the FRII nucleus hosts a luminous QSO (L2 − 10 keV = 1.3 × 1044 erg s−1, intrinsic and rest-frame) that is obscured by Compton-thick absorption (NH = 1.5 ± 0.6 × 1024 cm−2). Under standard bolometric corrections, the total measured radiative power (Lrad ∼ 4 × 1045 erg s−1) is similar to the jet kinetic power that we estimated from radio observations at 150 MHz (Pkin = 6.3 × 1045 erg s−1), in agreement with what is observed in powerful jetted AGN. Our Chandra observation is the deepest so far for a distant FRII within a galaxy overdensity. It revealed significant diffuse X-ray emission within the region that is covered by the overdensity. In particular, X-ray emission extending for ∼240 kpc is found around the eastern lobe of the FRII. Four out of the six MUSE star-forming galaxies in the overdensity are distributed in an arc-like shape at the edge of this diffuse X-ray emission. These objects are concentrated within 200 kpc in the plane of the sky and within 450 kpc in radial separation. Three of them are even more concentrated and fall within 60 kpc in both transverse and radial distance. The probability of observing four out of the six z = 1.7 sources by chance at the edge of the diffuse emission is negligible. In addition, these four galaxies have the highest specific star formation rates of the MUSE galaxies in the overdensity and lie above the main sequence of field galaxies of equal stellar mass at z = 1.7. We propose that the diffuse X-rays originate from an expanding bubble of gas that is shock heated by the FRII jet, and that star formation is promoted by the compression of the cold interstellar medium of the galaxies around the bubble, which may be remarkable evidence of positive AGN feedback on cosmological scales. We emphasize that our conclusions about the feedback are robust because even assuming that the diffuse X-ray emission arises from inverse Compton scattering of photons of the cosmic microwave background by the relativistic electrons in the radio lobe, star formation may be promoted by the nonthermal pressure of the expanding lobe.


1998 ◽  
Vol 188 ◽  
pp. 312-313
Author(s):  
K. Kikuchi ◽  
T. Ohashi ◽  
H. Ezawa ◽  
M. Hirayama ◽  
H. Honda ◽  
...  

Mapping observations of nearby large-extended clusters of galaxies (Coma, Perseus, Virgo, etc.) are being performed with ASCA. Such clusters allow us to map physical parameters of hot gas in the clusters, such as temperature, metal abundance, and X-ray surface brightness. To determine such parameters at each part of a cluster, one should take careful care of X-ray contamination from outside of a pointed field, which is mainly due to “stray-light” X-rays (Honda et al. 1997). For this reason, the only way to obtain the distribution of hot gas parameter is to process the whole cluster data in a self-consistent way. For this purpose, we are developing the new analysis system called TERRA.


Sign in / Sign up

Export Citation Format

Share Document