scholarly journals Multiple stellar systems

1986 ◽  
Vol 118 ◽  
pp. 441-442
Author(s):  
A. Duquennoy ◽  
M. Mayor

A spectroscopic survey of visual binaries with known orbital elements has been carried out with the radial velocity scanner CORAVEL at the Haute-Provence Observatory, since 1977, (Baranne, Mayor, Poncet, 1979). This survey of more than 100 visual systems, selected from Dommanget's catalogue (1967) (see also a new edition 1982) was first devoted to the determination of stellar masses. Several multiple systems were detected and have permitted also a study of the structure of triple systems. We have detected and measured in particular a class of triple systems with radial velocity variations of small amplitude. Taking advantage of the high resolution and high signal-to-noise ratio accessible with the cross-correlation technique, such small amplitude radial velocity curves are sometimes derived only through the change of width and shape of the cross-correlation function. Let us recall that the cc-function of a SB2 (or SB3) system is only the weighted sum of the individual cc-functions (Mayor, 1985). This property of the cross-correlation combined with the linearity of the detector allow a very simple analysis of blended dips. The full width at half depth of the cross-correlation dip is about FWHD = 16 km/s (in absence of noticeable rotation). Analysis of blended systems allows a good determination of the two individual velocities if the difference |vr1 -Vr2| is equal or larger than about 0.15 *FWHD (about 2 km/s).

2018 ◽  
Vol 612 ◽  
pp. A96 ◽  
Author(s):  
A. Frasca ◽  
P. Guillout ◽  
A. Klutsch ◽  
R. Freire Ferrero ◽  
E. Marilli ◽  
...  

Context. Star formation in the solar neighborhood is mainly traced by young stars in open clusters, associations, and in the field, which can be identified, for example, by their X-ray emission. The determination of stellar parameters for the optical counterparts of X-ray sources is crucial for a full characterization of these stars. Aims. This work extends the spectroscopic study of the RasTyc sample, obtained by the cross-correlation of the Tycho and ROSAT All-Sky Survey catalogs, to stars fainter than V = 9.5 mag and aims to identify sparse populations of young stars in the solar neighborhood. Methods. We acquired 625 high-resolution spectra for 443 presumably young stars with four different instruments in the northern hemisphere. The radial and rotational velocity (vsini) of our targets were measured by means of the cross-correlation technique, which is also helpful to discover single-lined (SB1), double-lined spectroscopic binaries (SB2), and multiple systems. We used the code ROTFIT to perform an MK spectral classification and to determine the atmospheric parameters (Teff, logg, [Fe/H]) and vsini of the single stars and SB1 systems. For these objects, we used the spectral subtraction of slowly rotating templates to measure the equivalent widths of the Hα and Li I 6708 Å lines, which enabled us to derive their chromospheric activity level and lithium abundance. We made use of Gaia DR1 parallaxes and proper motions to locate the targets in the Hertzsprung-Russell (HR) diagram and to compute the space velocity components of the youngest objects. Results. We find a remarkable percentage (at least 35%) of binaries and multiple systems. On the basis of the lithium abundance, the sample of single stars and SB1 systems appears to be mostly (~60%) composed of stars younger than the members of the UMa cluster. The remaining sources are in the age range between the UMa and Hyades clusters (~20%) or older (~20%). In total, we identify 42 very young (PMS-like) stars, which lie above or very close to the Pleiades upper envelope of the lithium abundance. A significant percentage (~12%) of evolved stars (giants and subgiants) is also present in our sample. Some of these stars (~36%) are also lithium rich (A(Li) > 1.4).


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2001 ◽  
Author(s):  
Peng Li ◽  
Xinhua Zhang ◽  
Wenlong Zhang

The traditional passive azimuth estimation algorithm using two hydrophones, such as cross-correlation time-delay estimation and cross-spectral phase estimation, requires a high signal-to-noise ratio (SNR) to ensure the clarity of the estimated target trajectory. This paper proposes an algorithm to apply the frequency diversity technique to passive azimuth estimation. The algorithm also uses two hydrophones but can obtain clear trajectories at a lower SNR. Firstly, the initial phase of the signal at different frequencies is removed by calculating the cross-spectral density matrix. Then, phase information between frequencies is used for beamforming. In this way, the frequency dimension information is used to improve the signal processing gain. This paper theoretically analyzes the resolution and processing gain of the algorithm. The simulation results show that the proposed algorithm can estimate the target azimuth robustly under the conditions of a single target (SNR = −16 dB) and multiple targets (SNR = −10 dB), while the cross-correlation algorithm cannot. Finally, the algorithm is tested by the swell96 data and the South Sea experimental data. When dealing with rich frequency signals, the performance of the algorithm using two hydrophones is even better than that of the conventional broadband beamforming of the 64-element array. This further validates the effectiveness and advantages of the algorithm.


2012 ◽  
Vol 8 (S295) ◽  
pp. 105-108
Author(s):  
William G. Hartley ◽  
Omar Almaini ◽  
Alice Mortlock ◽  
Chris Conselice ◽  

AbstractWe use the UKIDSS Ultra-Deep Survey, the deepest degree-scale near-infrared survey to date, to investigate the clustering of star-forming and passive galaxies to z ~ 3.5. Our new measurements include the first determination of the clustering for passive galaxies at z > 2, which we achieve using a cross-correlation technique. We find that passive galaxies are the most strongly clustered, typically hosted by massive dark matter halos with Mhalo > 1013 M⊙ irrespective of redshift or stellar mass. Our findings are consistent with models in which a critical halo mass determines the transition from star-forming to passive galaxies.


2016 ◽  
Vol 5 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Panagiotis P. Zacharias ◽  
Elpida G. Chatzineofytou ◽  
Sotirios T. Spantideas ◽  
Christos N. Capsalis

Abstract. In the present work, the determination of the magnetic behavior of localized magnetic sources from near-field measurements is examined. The distance power law of the magnetic field fall-off is used in various cases to accurately predict the magnetic signature of an equipment under test (EUT) consisting of multiple alternating current (AC) magnetic sources. Therefore, parameters concerning the location of the observation points (magnetometers) are studied towards this scope. The results clearly show that these parameters are independent of the EUT's size and layout. Additionally, the techniques developed in the present study enable the placing of the magnetometers close to the EUT, thus achieving high signal-to-noise ratio (SNR). Finally, the proposed method is verified by real measurements, using a mobile phone as an EUT.


2019 ◽  
Vol 488 (3) ◽  
pp. 3759-3771 ◽  
Author(s):  
Sambatra Andrianomena ◽  
Camille Bonvin ◽  
David Bacon ◽  
Philip Bull ◽  
Chris Clarkson ◽  
...  

ABSTRACT The apparent sizes and brightnesses of galaxies are correlated in a dipolar pattern around matter overdensities in redshift space, appearing larger on their near side and smaller on their far side. The opposite effect occurs for galaxies around an underdense region. These patterns of apparent magnification induce dipole and higher multipole terms in the cross-correlation of galaxy number density fluctuations with galaxy size/brightness (which is sensitive to the convergence field). This provides a means of directly measuring peculiar velocity statistics at low and intermediate redshift, with several advantages for performing cosmological tests of general relativity (GR). In particular, it does not depend on empirically calibrated scaling relations like the Tully–Fisher and Fundamental Plane methods. We show that the next generation of spectroscopic galaxy redshift surveys will be able to measure the Doppler magnification effect with sufficient signal-to-noise ratio to test GR on large scales. We illustrate this with forecasts for the constraints that can be achieved on parametrized deviations from GR for forthcoming low-redshift galaxy surveys with DESI and SKA2. Although the cross-correlation statistic considered has a lower signal-to-noise ratio than RSD, it will be a useful probe of GR since it is sensitive to different systematics.


2020 ◽  
Vol 636 ◽  
pp. A74 ◽  
Author(s):  
Trifon Trifonov ◽  
Lev Tal-Or ◽  
Mathias Zechmeister ◽  
Adrian Kaminski ◽  
Shay Zucker ◽  
...  

Context. The High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph has been mounted since 2003 at the ESO 3.6 m telescope in La Silla and provides state-of-the-art stellar radial velocity (RV) measurements with a precision down to ∼1 m s−1. The spectra are extracted with a dedicated data-reduction software (DRS), and the RVs are computed by cross-correlating with a numerical mask. Aims. This study has three main aims: (i) Create easy access to the public HARPS RV data set. (ii) Apply the new public SpEctrum Radial Velocity AnaLyser (SERVAL) pipeline to the spectra, and produce a more precise RV data set. (iii) Determine whether the precision of the RVs can be further improved by correcting for small nightly systematic effects. Methods. For each star observed with HARPS, we downloaded the publicly available spectra from the ESO archive and recomputed the RVs with SERVAL. This was based on fitting each observed spectrum with a high signal-to-noise ratio template created by coadding all the available spectra of that star. We then computed nightly zero-points (NZPs) by averaging the RVs of quiet stars. Results. By analyzing the RVs of the most RV-quiet stars, whose RV scatter is < 5 m s−1, we find that SERVAL RVs are on average more precise than DRS RVs by a few percent. By investigating the NZP time series, we find three significant systematic effects whose magnitude is independent of the software that is used to derive the RV: (i) stochastic variations with a magnitude of ∼1 m s−1; (ii) long-term variations, with a magnitude of ∼1 m s−1 and a typical timescale of a few weeks; and (iii) 20–30 NZPs that significantly deviate by a few m s−1. In addition, we find small (≲1 m s−1) but significant intra-night drifts in DRS RVs before the 2015 intervention, and in SERVAL RVs after it. We confirm that the fibre exchange in 2015 caused a discontinuous RV jump that strongly depends on the spectral type of the observed star: from ∼14 m s−1 for late F-type stars to ∼ − 3 m s−1 for M dwarfs. The combined effect of extracting the RVs with SERVAL and correcting them for the systematics we find is an improved average RV precision: an improvement of ∼5% for spectra taken before the 2015 intervention, and an improvement of ∼15% for spectra taken after it. To demonstrate the quality of the new RV data set, we present an updated orbital solution of the GJ 253 two-planet system. Conclusions. Our NZP-corrected SERVAL RVs can be retrieved from a user-friendly public database. It provides more than 212 000 RVs for about 3000 stars along with much auxiliary information, such as the NZP corrections, various activity indices, and DRS-CCF products.


2004 ◽  
Vol 193 ◽  
pp. 275-278
Author(s):  
Malcolm Cropp ◽  
Karen R. Pollard ◽  
Jovan Skuljan

AbstractFour δ Scuti stars were observed with the HERCULES fibrefed échelle spectrograph at Mount John University Observatory, New Zealand. These observations were analysed by looking at the radial velocity variations as given by a cross-correlation technique as well as spectral line moment variations. These results were compared to published photometric studies of these stars to see if the modes identified in the photometry were also present in the spectroscopic data obtained.


2002 ◽  
Vol 185 ◽  
pp. 236-237
Author(s):  
J.-M. Le Contel ◽  
P. Mathias ◽  
E. Chapellier ◽  
J.-C. Valtier

The star 53 Psc (HD 3379, B2.5IV) has been observed as variable by several authors (Sareyan et al., 1979) with frequencies around 10 c d–1 and has been classified as a β Cephei star. Conversely, other authors (e.g. Percy, 1971) found it to be constant.New high resolution, high signal-to-noise ratio, Spectroscopic observations have been performed at the Observatoire de Haute-Provence in 1996 over 11 nights. The spectral domain covers around 200 Å and is centered on Hδ. Radial velocities were deduced from an auto-correlation technique with a scatter around 0.4kms−1.No high frequency variations are observed. Three frequencies have been detected with a false alarm detection above the 1 % level. A fourth one may be present but its amplitude is below this 1 % level. Results are displayed in Table 1.


1980 ◽  
Vol 88 ◽  
pp. 53-57 ◽  
Author(s):  
Francis Fekel ◽  
Claud H. Lacy ◽  
J. Tomkin

The recent installation of a solid-state 1024-element silicon photodiode array detector (Reticon) at the coude focus of the 2.7 m McDonald Observatory reflector has greatly extended its limits of observation for binary and multiple systems which have weak and/or broad-lined components. This detector can produce extremely high signal-to-noise ratio observations and has high quantum efficiency over the wavelength region 3000-11000Å. The observational programs of three users of this device are described below.


Sign in / Sign up

Export Citation Format

Share Document