scholarly journals The Multiple Shell PN NGC 2438: Shell Modeling and the Influence of Different Central Star Models

2003 ◽  
Vol 209 ◽  
pp. 511-512
Author(s):  
Birgit Armsdorfer ◽  
Stefan Kimeswenger ◽  
Thomas Rauch

Modeling the shells of multiple shell planetary nebulae using different model spectra for hot central stars, we found that a blackbody model leads to wrong nebular parameters. We model the density profile of the outer shells, varying the results of hydrodynamical simulations. This leads to a spatial excitation profile which reproduces well the observations.

1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


1989 ◽  
Vol 131 ◽  
pp. 355-355 ◽  
Author(s):  
D. J. Monk ◽  
M. J. Barlow ◽  
R. E. S. Clegg

AAT and IUE spectra of thirteen medium-excitation Magellanic Cloud planetary nebulae have been used to derive H I Zanstra effective temperatures and surface gravities for the central stars.


2020 ◽  
Vol 638 ◽  
pp. A103 ◽  
Author(s):  
N. Chornay ◽  
N. A. Walton

Context. Accurate distance measurements are fundamental to the study of planetary nebulae (PNe) but they have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims. The accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprecedented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods. We developed and applied an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the Hong Kong/AAO/Strasbourg Hα PN catalogue, taking into account the BP – RP colours of the Gaia sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources were inferred directly from the data. Results. We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and we discuss the prospects for further refinement of the matching based on additional data. We also compare the accuracy of our catalogue to that of previous works.


1997 ◽  
Vol 180 ◽  
pp. 287-287
Author(s):  
N. A. Walton ◽  
J. R. Walsh ◽  
G. Dudziak

The Abell catalogue of planetary nebulae (PN) are distinguished by their large size, low surface brightness and generally faint central stars. They are thought to be old PN approaching the White Dwarf cooling track. A number have evidence for late thermal pulses (H-poor ejecta near the central star, e.g. A78) and binary central stars.


1983 ◽  
Vol 103 ◽  
pp. 230-230
Author(s):  
R. Tylenda

Massive central stars (M > 1 Mo) of planetary nebulae burn nuclear fuel on a time scale of hundreds or tens of years which is shorter than the recombination time in a typical planetary nebula. Consequently the ionization and thermal structure of a nebula with such a nucleus is expected to be far from equilibrium conditions. The greatest chance of observing such a nebula is when the central star cools down to the white dwarf region. Time-dependent photoionization models suggest the following non-equilibrium effects to be expected at this stage. Firstly, the nebula shows a double shell structure, i.e. a bright, inner ring is surrounded by a faint, extended halo best seen in the HI lines and infrared lines from low-ionization species, such as (Ne II) 12.8 μ. Secondly, the low-excitation emission ((O II), (Ne II), (S III)) is enhanced relative to the high-excitation ((O III), (Ne III), (S III)). Thirdly, different modifications of the Zanstra method result in significantly different temperatures for the central star with a general rule that THI > THeII > THeII/HI The He II Zanstra method gives the most reliable result. Fourthly, the electron temperature derived from the (O III) lines is appreciably higher than that obtained from the (N II) lines. It is suggested that NGC 7027 and NGC 2440 possess massive central stars and that the above time-dependent effects are currently observed in these nebulae.


2003 ◽  
Vol 209 ◽  
pp. 541-542 ◽  
Author(s):  
Aubrie McLean ◽  
Martín A. Guerrero ◽  
Robert A. Gruendl ◽  
You-Hua Chu

The origin of the wide range of morphologies observed in planetary nebulae (PNe) is not well established. The influence of a binary companion of the central star can naturally explain this variety of morphologies, but very few PNe have known binary central stars. The evolution of the binary system with mass loss may result in the displacement of the central star from the nebular center. The large sample of PNe observed by HST is being used to search for de-centered central stars. Preliminary results indicate that the occurrence of de-centered central stars is widespread among all morphological types of PNe.


1993 ◽  
Vol 155 ◽  
pp. 91-91
Author(s):  
R.W. Tweedy

A high-resolution IUE spectral atlas of central stars of planetary nebulae and hot white dwarfs has been produced (part of Tweedy, 1991, PhD thesis from the University of Leicester, UK), and examples from it are shown here. It has been sorted into an approximate evolutionary sequence, based on published spectroscopic analyses, from the cool 28,000K young central star He 2–138, through the hot objects like NGC 7293 and NGC 246 at 90,000K and 130,000K respectively, down to 40,000K DA white dwarfs like GD 2, which is the chosen cutoff for this selection. Copies of a revised version of this atlas, which will include more recent spectroscopic information and also white dwarfs down to 35,000K – to include the Si III object GD 394 – will be sent to anyone who requests one.


2011 ◽  
Vol 7 (S283) ◽  
pp. 344-345
Author(s):  
Dimitri Douchin ◽  
George H. Jacoby ◽  
Orsola De Marco ◽  
Steve B. Howell ◽  
Mattias Kronberger

AbstractThe Kepler Observatory offers unprecedented photometric precision (<1 mmag) and cadence for monitoring the central stars of planetary nebulae, allowing the detection of tiny periodic light curve variations, a possible signature of binarity. With this precision free from the observational gaps dictated by weather and lunar cycles, we are able to detect companions at much larger separations and with much smaller radii than ever before. We have been awarded observing time to obtain light-curves of the central stars of the six confirmed and possible planetary nebulae in the Kepler field, including the newly discovered object Kn 61, at cadences of both 30 min and 1 min. Of these six objects, we could confirm for three a periodic variability consistent with binarity. Two others are variables, but the initial data set presents only weak periodicities. For the central star of Kn 61, Kepler data will be available in the near future.


2010 ◽  
Vol 27 (2) ◽  
pp. 220-226 ◽  
Author(s):  
C. J. Wareing

AbstractThe interaction of planetary nebulae (PNe) with the interstellar medium (ISM) as they move through it is now acknowledged to be a major shaping effect not just for ancient and large PNe, but also for relatively young PNe with high-speed central stars. The most common effect is a rebrightening as the PN shell interacts with a pre-existing bow-shock structure formed during the previous evolutionary phase of the central star. In this review we consider this rebrightening in detail for the first time and discuss its origins, highlighting some observed examples. We go on to discuss the AGB progenitor stars, reviewing the evidence for bow-shock structures, and consider the progeny of rebrightened PNe — strongly disrupted objects which bear very little resemblance to typical PNe. Sh 2-68 is inferred to be perhaps the only documented case so far of such a PN.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 110
Author(s):  
R. Wesson ◽  
D. Jones ◽  
J. García-Rojas ◽  
H. Boffin ◽  
R. Corradi

Motivated by the recent establishment of a connection between central star binarity and extreme abundance discrepancies in planetary nebulae, we have carried out a spectroscopic survey targeting planetary nebula with binary central stars and previously unmeasured recombination line abundances. We have discovered seven new extreme abundance discrepancies, confirming that binarity is key to understanding the abundance discrepancy problem. Analysis of all 15 objects with a binary central star and a measured abundance discrepancy suggests a cut-off period of about 1.15 days, below which extreme abundance discrepancies are found.


Sign in / Sign up

Export Citation Format

Share Document