Express saccades and visual attention

1993 ◽  
Vol 16 (3) ◽  
pp. 553-567 ◽  
Author(s):  
B. Fischer ◽  
H. Weber

AbstractOne of the most intriguing and controversial observations in oculomotor research in recent years is the phenomenon of express saccades in monkeys and man. These are saccades with such short reaction times (100 msec in man, 70 msec in monkeys) that some experts on eye movements still regard them as artifacts or as anticipatory reactions that do not need any further explanation. On the other hand, some research groups consider them not only authentic but also a valuable means of investigating the mechanisms of saccade generation, the coordination of vision and eye movements, and the mechanisms of visual attention.This target article puts together pieces of experimental evidence in oculomotor and related research – with special emphasis on the express saccade – to enhance our present understanding of the coordination of vision, visual attention, and the eye movements subserving visual perception and cognition.We hypothesize that an optomotor reflex is responsible for the occurrence of express saccades, one that is controlled by higher brain functions involved in disengaged visual attention and decision making. We propose a neural network as the basis for more elaborate mathematical models or computer simulations of the optomotor system in primates.

2016 ◽  
Vol 113 (24) ◽  
pp. 6743-6748 ◽  
Author(s):  
Nathan J. Hall ◽  
Carol L. Colby

A key structure for directing saccadic eye movements is the superior colliculus (SC). The visual pathways that project to the SC have been reported to carry only luminance information and not color information. Short-wavelength–sensitive cones (S-cones) in the retina make little or no contribution to luminance signals, leading to the conclusion that S-cone stimuli should be invisible to SC neurons. The premise that S-cone stimuli are invisible to the SC has been used in numerous clinical and human psychophysical studies. The assumption that the SC cannot use S-cone stimuli to guide behavior has never been tested. We show here that express saccades, which depend on the SC, can be driven by S-cone input. Further, express saccade reaction times and changes in SC activity depend on the amount of S-cone contrast. These results demonstrate that the SC can use S-cone stimuli to guide behavior. We conclude that the use of S-cone stimuli is insufficient to isolate SC function in psychophysical and clinical studies of human subjects.


Perception ◽  
1994 ◽  
Vol 23 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Monica Biscaldi ◽  
Burkhart Fischer ◽  
Franz Aiple

Twenty-four children made saccades in five noncognitive tasks. Two standard tasks required saccades to a single target presented randomly 4 deg to the right or left of a fixation point. Three other tasks required sequential saccades from the left to the right. 75 parameters of the eye-movement data were collected for each child. On the basis of their reading, writing, and other cognitive performances, twelve children were considered dyslexic and were divided into two groups (D1 and D2). Group statistical comparisons revealed significant differences between control and dyslexic subjects. In general, in the standard tasks the dyslexic subjects had poorer fixation quality, failed more often to hit the target at once, had smaller primary saccades, and had shorter reaction times to the left as compared with the control group. The control group and group D1 dyslexics showed an asymmetrical distribution of reaction times, but in opposite directions. Group D2 dyslexics made more anticipatory and express saccades, they undershot the target more often in comparison with the control group, and almost never overshot it. In the sequential tasks group D1 subjects made fewer and larger saccades in a shorter time and group D2 subjects had shorter fixation durations than the subjects of the control group.


2018 ◽  
Vol 120 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Benjamin Fischer ◽  
Detlef Wegener

Nonhuman primates constitute an indispensable model system for studying higher brain functions at the neurophysiological level. Studies involving these animals elucidated the neuronal mechanisms of various cognitive and executive functions, such as visual attention, working memory, and decision-making. Positive reinforcement training (PRT) constitutes the gold standard for training animals on the cognitive tasks employed in these studies. In the laboratory, PRT is usually based on application of a liquid reward as the reinforcer to strengthen the desired behavior and absence of the reward if the animal’s response is wrong. By trial and error, the monkey may adapt its behavior and successfully reduce the number of error trials, and eventually learn even very sophisticated tasks. However, progress and success of the training strongly depend on reasonable error rates. If errors get too frequent, they may cause a drop in the animal’s motivation to cooperate or its adaptation to high error rates and poor overall performance. We introduce in this report an alternative training regime to minimize errors and base the critical information for learning on graded rewarding. For every new task rule, the feedback to the animal is provided by different amounts of reward to distinguish the desired, optimal behavior from less optimal behavior. We applied this regime in different situations during training of visual attention tasks and analyzed behavioral performance and reaction times to evaluate its effectiveness. For both simple and complex behaviors, graded rewarding was found to constitute a powerful technique allowing for effective training without trade-off in accessible task difficulty or task performance. NEW & NOTEWORTHY Laboratory training of monkeys usually builds on providing a fixed amount of reward for the desired behavior, and no reward otherwise. We present a nonbinary, graded reward schedule to emphasize the positive, desired behavior and to keep errors on a moderate level. Using data from typical training situations, we demonstrate that graded rewards help to effectively guide the animal by success rather than errors and provide a powerful new tool for positive reinforcement training.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ken-ichi Morishige ◽  
Nobuo Hiroe ◽  
Masa-aki Sato ◽  
Mitsuo Kawato

AbstractAlthough humans can direct their attention to visual targets with or without eye movements, it remains unclear how different brain mechanisms control visual attention and eye movements together and/or separately. Here, we measured MEG and fMRI data during covert/overt visual pursuit tasks and estimated cortical currents using our previously developed extra-dipole, hierarchical Bayesian method. Then, we predicted the time series of target positions and velocities from the estimated cortical currents of each task using a sparse machine-learning algorithm. The predicted target positions/velocities had high temporal correlations with actual visual target kinetics. Additionally, we investigated the generalization ability of predictive models among three conditions: control, covert, and overt pursuit tasks. When training and testing data were the same tasks, the largest reconstructed accuracies were overt, followed by covert and control, in that order. When training and testing data were selected from different tasks, accuracies were in reverse order. These results are well explained by the assumption that predictive models consist of combinations of three computational brain functions: visual information-processing, maintenance of attention, and eye-movement control. Our results indicate that separate subsets of neurons in the same cortical regions control visual attention and eye movements differently.


2012 ◽  
Vol 17 (4) ◽  
pp. 257-265 ◽  
Author(s):  
Carmen Munk ◽  
Günter Daniel Rey ◽  
Anna Katharina Diergarten ◽  
Gerhild Nieding ◽  
Wolfgang Schneider ◽  
...  

An eye tracker experiment investigated 4-, 6-, and 8-year old children’s cognitive processing of film cuts. Nine short film sequences with or without editing errors were presented to 79 children. Eye movements up to 400 ms after the targeted film cuts were measured and analyzed using a new calculation formula based on Manhattan Metrics. No age effects were found for jump cuts (i.e., small movement discontinuities in a film). However, disturbances resulting from reversed-angle shots (i.e., a switch of the left-right position of actors in successive shots) led to increased reaction times between 6- and 8-year old children, whereas children of all age groups had difficulties coping with narrative discontinuity (i.e., the canonical chronological sequence of film actions is disrupted). Furthermore, 4-year old children showed a greater number of overall eye movements than 6- and 8-year old children. This indicates that some viewing skills are developed between 4 and 6 years of age. The results of the study provide evidence of a crucial time span of knowledge acquisition for television-based media literacy between 4 and 8 years.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


Folia Medica ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. 289-296
Author(s):  
Jakob Korf

Abstract Qualia are private conscious experiences of which the associated feelings can be reported to other people. Whether qualia are amenable to scientific exploration has often been questioned, which is challenged by the present article. The following arguments are given: 1. the configuration of the brain changes continuously and irreversibly, because of genetic and environmental influences and interhuman communication; 2. qualia and consciousness are processes, rather than states; 3. private feelings, including those associated with qualia, should be positioned in the context of a personal brain as being developed during life; 4. consciousness and qualia should be understood in the context of general system theory, thus concluding that isolated, in vitro, properties of neurons and other brain constituents might marginally contribute to the understanding of higher brain functions, mind or qualia; 5. current in vivo approaches have too little resolution power - in terms of space and time - to delineate individual and subjective brain processes. When subtle personalized properties of the nervous system can be assessed in vivo or in vitro, qualia can scientifically be investigated. We discuss some approaches to overcome these barriers.


2004 ◽  
Vol 21 (2) ◽  
pp. 119-127 ◽  
Author(s):  
PETER H. SCHILLER ◽  
JOHANNES HAUSHOFER ◽  
GEOFFERY KENDALL

The frequency with which express saccades are generated under a variety of conditions in rhesus monkeys was examined. Increasing the gap time between fixation spot termination and target onset increased express saccade frequency but was progressively less effective in doing so as the number of target positions in the sample was increased. Express saccades were rarely produced when two targets were presented simultaneously and the choice of either of which was rewarded; a temporal asynchrony of only 17 ms between the targets reinstated express saccade generation. Express saccades continued to be generated when the vergence or pursuit systems was coactivated with the saccadic system.


Sign in / Sign up

Export Citation Format

Share Document