Unique features of human movement control predicted by the leading joint hypothesis

2012 ◽  
Vol 35 (4) ◽  
pp. 223-224
Author(s):  
Natalia Dounskaia

AbstractVaesen suggests that motor control is not among the primary origins of the uniqueness of human tool use. However, recent findings show that cognitive processes involved in control of human limb movements may be much more sophisticated than it was believed previously. The sophistication of movement control may substantially contribute to the uniqueness of humans in tool use.

2020 ◽  
Author(s):  
Chang He ◽  
Cai-Hua Xiong ◽  
Ze-Jian Chen ◽  
Wei Fan ◽  
Xiao-Lin Huang

Abstract Background: Upper limb exoskeletons have drawn significant attention in neurorehabilitation because of anthropomorphic mechanical structure analogous to human anatomy. Whereas, the training movements are typically underorganized because most exoskeletons only control the movement of the hand in space, without considering rehabilitation of joint motion, particularly inter-joint postural synergy. The purposes of this study were to explore the application of a postural synergy-based exoskeleton (Armule) reproducing natural human movements for robot-assisted neurorehabilitation and to preliminarily assess its effect on patients' upper limb motor control after stroke. Methods: We developed a novel upper limb exoskeleton based on the concept of postural synergy, which provided five degrees of freedom (DOF) , natural human movements of the upper limb. Eight participants with hemiplegia due to a first-ever, unilateral stroke were recruited and included. They participated in exoskeleton therapy sessions 45 minutes/day, 5 days/week for 4 weeks, with passive/active training under anthropomorphic trajectories and postures. The primary outcome was the Fugl-Meyer Assessment for Upper Extremities (FMA-UE). The secondary outcomes were the Action Research Arm Test(ARAT), modified Barthel Index (mBI) , and exoskeleton kinematic as well as interaction force metrics: motion smoothness in the joint space, postural synergy error, interaction force smoothness, and the intent response rate. Results: After the 4-weeks intervention, all subjects showed significant improvements in the following clinical measures: the FMA-UE ( p =0.02), the ARAT ( p =0.003), and the mBI score ( p <0.001). Besides, all subjects showed significant improvements in motion smoothness ( p =0.004), postural synergy error ( p =0.014), interaction force smoothness ( p =0.004), and the intent response rate ( p =0.008). Conclusions: The subjects were well adapted to our device that assisted in completing functional movements with natural human movement characteristics. The results of the preliminary clinical intervention indicate that the Armule exoskeleton improves individuals’ motor control and activities of daily living (ADL) function after stroke, which might be associated with kinematic and interaction force optimization and postural synergy modification during functional tasks. Clinical trial registration: ChiCTR, ChiCTR1900026656; Date of registration: October 17, 2019. http://www.chictr.org.cn/showproj.aspx?proj=44420


2018 ◽  
Author(s):  
Janna M. Gottwald

This article critically reviews kinematic measures of prospective motor control. Prospective motor control, the ability to anticipatorily adjust movements with respect to task demands and action goals, is an important process involved in action planning. In manual object manipulation tasks, prospective motor control has been studied in various ways, mainly using motion tracking. For this matter, it is crucial to pinpoint the early part of the movement that purely reflects prospective (feed-forward) processes, but not feedback influences from the unfolding movement. One way of defining this period is to rely on a fixed time criterion; another is to base it flexibly on the inherent structure of each movement itself. Velocity—as one key characteristic of human movement—offers such a possibility and describes the structure of movements in a meaningful way. Here, I argue for the latter way of investigating prospective motor control by applying the measure of peak velocity of the first movement unit. I further discuss movement units and their significance in motor development of infants and contrast the introduced measure with other measures related to peak velocity and duration.


Robotics ◽  
2013 ◽  
pp. 1212-1232 ◽  
Author(s):  
Rogério Sales Gonçalves ◽  
João Carlos Mendes Carvalho

The science of rehabilitation shows that repeated movements of human limbs can help the patient regain function in the injured limb. There are three types of mechanical systems used for movement rehabilitation: robots, cable-based manipulators, and exoskeletons. Industrial robots can be used because they provide a three-dimensional workspace with a wide range of flexibility to execute different trajectories, which are useful for motion rehabilitation. The cable-based manipulators consist of a movable platform and a base, which are connected by multiple cables that can extend or retract. The exoskeleton is fixed around the patient's limb to provide the physiotherapy movements. This chapter presents a summary of the principal human limb movements, a review of several mechanical systems used for rehabilitation, as well as common mathematical models of such systems.


2021 ◽  
Vol 3 ◽  
Author(s):  
Arata Kimura ◽  
Toshiharu Yokozawa ◽  
Hiroki Ozaki

Coordination is a multidisciplinary concept in human movement science, particularly in the field of biomechanics and motor control. However, the term is not used synonymously by researchers and has substantially different meanings depending on the studies. Therefore, it is necessary to clarify the meaning of coordination to avoid confusion. The meaning of coordination in motor control from computational and ecological perspectives has been clarified, and the meanings differed between them. However, in biomechanics, each study has defined the meaning of the term and the meanings are diverse, and no study has attempted to bring together the diversity of the meanings of the term. Therefore, the purpose of this study is to provide a summary of the different meanings of coordination across the theoretical landscape and clarify the meaning of coordination in biomechanics. We showed that in biomechanics, coordination generally means the relation between elements that act toward the achievement of a motor task, which we call biomechanical coordination. We also showed that the term coordination used in computational and ecological perspectives has two different meanings, respectively. Each one had some similarities with biomechanical coordination. The findings of this study lead to an accurate understanding of the concept of coordination, which would help researchers formulate their empirical arguments for coordination in a more transparent manner. It would allow for accurate interpretation of data and theory development. By comprehensively providing multiple perspectives on coordination, this study intends to promote coordination studies in biomechanics.


Author(s):  
Sławomir Wudarczyk ◽  
Bogusz Lewandowski ◽  
Jarosław Szrek ◽  
Jacek Bałchanowski

1997 ◽  
Vol 20 (4) ◽  
pp. 619-619 ◽  
Author(s):  
Stephen Grossberg

Examples of how LTP and LTD can control adaptively-timed learning that modulates attention and motor control are given. It is also suggested that LTP/LTD can play a role in storing memories. The distinction between match-based and mismatch-based learning may help to clarify the difference.


Motor Control ◽  
1999 ◽  
Vol 3 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Peter D. Neilson

This commentary firstly supports Smeets and Brenner in their choice of a kinematic trajectory, submitting that the challenge posed by the rival torque-change formulation is resolved by consideration of intermittency in human movement control. Second, it examines the choice of optimization criterion for trajectory planning, arguing in favor of minimum acceleration rather than minimum jerk. Third, using the notion of optimized trajectories in task-dependent coordinate space together with synergy generation, it suggests a formulation that reduces the processing load entailed in Smeets and Brenner's proposal of individual trajectories for each digit.


Behaviour ◽  
2002 ◽  
Vol 139 (7) ◽  
pp. 939-973 ◽  
Author(s):  
Denis Boire ◽  
Nektaria Nicolakakis ◽  
Louis Lefebvre

AbstractTools are traditionally defined as objects that are used as an extension of the body and held directly in the hand or mouth. By these standards, a vulture breaking an egg by hitting it with a stone uses a tool, but a gull dropping an egg on a rock does not. This distinction between true and borderline (or proto-tool) cases has been criticized for its arbitrariness and anthropocentrism. We show here that relative size of the neostriatum and whole brain distinguish the true and borderline categories in birds using tools to obtain food or water. From two sources, the specialized literature on tools and an innovation data base gathered in the short note sections of 68 journals in 7 areas of the world, we collected 39 true (e.g. use of probes, hammers, sponges, scoops) and 86 borderline (e.g. bait fishing, battering and dropping on anvils, holding with wedges and skewers) cases of tool use in 104 species from 15 parvorders. True tool users have a larger mean residual brain size (regressed against body weight) than do users of borderline tools, confirming the distinction in the literature. In multiple regressions, residual brain size and residual size of the neostriatum (one of the areas in the avian telencephalon thought to be equivalent to the mammalian neocortex) are the best predictors of true tool use reports per taxon. Innovation rate is the best predictor of borderline tool use distribution. Despite the strong concentration of true tool use cases in Corvida and Passerida, independent constrasts suggest that common ancestry is not responsible for the association between tool use and size of the neostriatum and whole brain. Our results demonstrate that birds are more frequent tool users than usually thought and that the complex cognitive processes involved in tool use may have repeatedly co-evolved with large brains in several orders of birds.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Salam Bahmad ◽  
Luke E. Miller ◽  
Minh Tu Pham ◽  
Richard Moreau ◽  
Romeo Salemme ◽  
...  

Abstract Following tool-use, the kinematics of free-hand movements are altered. This modified kinematic pattern has been taken as a behavioral hallmark of the modification induced by tool-use on the effector representation. Proprioceptive inputs appear central in updating the estimated effector state. Here we questioned whether online proprioceptive modality that is accessed in real time, or offline, memory-based, proprioception is responsible for this update. Since normal aging affects offline proprioception only, we examined a group of 60 year-old adults for proprioceptive acuity and movement’s kinematics when grasping an object before and after tool-use. As a control, participants performed the same movements with a weight—equivalent to the tool—weight-attached to their wrist. Despite hampered offline proprioceptive acuity, 60 year-old participants exhibited the typical kinematic signature of tool incorporation: Namely, the latency of transport components peaks was longer and their amplitude reduced after tool-use. Instead, we observed no kinematic modifications in the control condition. In addition, online proprioception acuity correlated with tool incorporation, as indexed by the amount of kinematics changes observed after tool-use. Altogether, these findings point to the prominent role played by online proprioception in updating the body estimate for the motor control of tools.


Sign in / Sign up

Export Citation Format

Share Document