scholarly journals Postural Synergy-Based Exoskeleton Reproducing Natural Human Movements to Improve Upper Limb Motor Control after Stroke

Author(s):  
Chang He ◽  
Cai-Hua Xiong ◽  
Ze-Jian Chen ◽  
Wei Fan ◽  
Xiao-Lin Huang

Abstract Background: Upper limb exoskeletons have drawn significant attention in neurorehabilitation because of anthropomorphic mechanical structure analogous to human anatomy. Whereas, the training movements are typically underorganized because most exoskeletons only control the movement of the hand in space, without considering rehabilitation of joint motion, particularly inter-joint postural synergy. The purposes of this study were to explore the application of a postural synergy-based exoskeleton (Armule) reproducing natural human movements for robot-assisted neurorehabilitation and to preliminarily assess its effect on patients' upper limb motor control after stroke. Methods: We developed a novel upper limb exoskeleton based on the concept of postural synergy, which provided five degrees of freedom (DOF) , natural human movements of the upper limb. Eight participants with hemiplegia due to a first-ever, unilateral stroke were recruited and included. They participated in exoskeleton therapy sessions 45 minutes/day, 5 days/week for 4 weeks, with passive/active training under anthropomorphic trajectories and postures. The primary outcome was the Fugl-Meyer Assessment for Upper Extremities (FMA-UE). The secondary outcomes were the Action Research Arm Test(ARAT), modified Barthel Index (mBI) , and exoskeleton kinematic as well as interaction force metrics: motion smoothness in the joint space, postural synergy error, interaction force smoothness, and the intent response rate. Results: After the 4-weeks intervention, all subjects showed significant improvements in the following clinical measures: the FMA-UE ( p =0.02), the ARAT ( p =0.003), and the mBI score ( p <0.001). Besides, all subjects showed significant improvements in motion smoothness ( p =0.004), postural synergy error ( p =0.014), interaction force smoothness ( p =0.004), and the intent response rate ( p =0.008). Conclusions: The subjects were well adapted to our device that assisted in completing functional movements with natural human movement characteristics. The results of the preliminary clinical intervention indicate that the Armule exoskeleton improves individuals’ motor control and activities of daily living (ADL) function after stroke, which might be associated with kinematic and interaction force optimization and postural synergy modification during functional tasks. Clinical trial registration: ChiCTR, ChiCTR1900026656; Date of registration: October 17, 2019. http://www.chictr.org.cn/showproj.aspx?proj=44420

2021 ◽  
Vol 11 (13) ◽  
pp. 5865
Author(s):  
Muhammad Ahsan Gull ◽  
Mikkel Thoegersen ◽  
Stefan Hein Bengtson ◽  
Mostafa Mohammadi ◽  
Lotte N. S. Andreasen Struijk ◽  
...  

Wheelchair mounted upper limb exoskeletons offer an alternative way to support disabled individuals in their activities of daily living (ADL). Key challenges in exoskeleton technology include innovative mechanical design and implementation of a control method that can assure a safe and comfortable interaction between the human upper limb and exoskeleton. In this article, we present a mechanical design of a four degrees of freedom (DOF) wheelchair mounted upper limb exoskeleton. The design takes advantage of non-backdrivable mechanism that can hold the output position without energy consumption and provide assistance to the completely paralyzed users. Moreover, a PD-based trajectory tracking control is implemented to enhance the performance of human exoskeleton system for two different tasks. Preliminary results are provided to show the effectiveness and reliability of using the proposed design for physically disabled people.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yali Liu ◽  
Chong Li ◽  
Linhong Ji ◽  
Sheng Bi ◽  
Xuemin Zhang ◽  
...  

Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient’s functional ability by training the normal movement pattern.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mostafa Mohammadi ◽  
Hendrik Knoche ◽  
Mikkel Thøgersen ◽  
Stefan Hein Bengtson ◽  
Muhammad Ahsan Gull ◽  
...  

Spinal cord injury can leave the affected individual severely disabled with a low level of independence and quality of life. Assistive upper-limb exoskeletons are one of the solutions that can enable an individual with tetraplegia (paralysis in both arms and legs) to perform simple activities of daily living by mobilizing the arm. Providing an efficient user interface that can provide full continuous control of such a device—safely and intuitively—with multiple degrees of freedom (DOFs) still remains a challenge. In this study, a control interface for an assistive upper-limb exoskeleton with five DOFs based on an intraoral tongue-computer interface (ITCI) for individuals with tetraplegia was proposed. Furthermore, we evaluated eyes-free use of the ITCI for the first time and compared two tongue-operated control methods, one based on tongue gestures and the other based on dynamic virtual buttons and a joystick-like control. Ten able-bodied participants tongue controlled the exoskeleton for a drinking task with and without visual feedback on a screen in three experimental sessions. As a baseline, the participants performed the drinking task with a standard gamepad. The results showed that it was possible to control the exoskeleton with the tongue even without visual feedback and to perform the drinking task at 65.1% of the speed of the gamepad. In a clinical case study, an individual with tetraplegia further succeeded to fully control the exoskeleton and perform the drinking task only 5.6% slower than the able-bodied group. This study demonstrated the first single-modal control interface that can enable individuals with complete tetraplegia to fully and continuously control a five-DOF upper limb exoskeleton and perform a drinking task after only 2 h of training. The interface was used both with and without visual feedback.


2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986318 ◽  
Author(s):  
Xin Wang ◽  
Qiuzhi Song ◽  
Shitong Zhou ◽  
Jing Tang ◽  
Kezhong Chen ◽  
...  

In this article, a method of multi-connection load compensation and load information calculation for an upper-limb exoskeleton is proposed based on a six-axis force/torque sensor installed between the exoskeleton and the end effector. The proposed load compensation method uses a mounted sensor to measure the force and torque between the exoskeleton and load of different connections and adds a compensator to the controller to compensate the component caused by the load in the human–robot interaction force, so that the human–robot interaction force is only used to operate the exoskeleton. Therefore, the operator can manipulate the exoskeleton with the same interaction force to lift loads of different weights with a passive or fixed connection, and the human–robot interaction force is minimized. Moreover, the proposed load information calculation method can calculate the weight of the load and the position of its center of gravity relative to the exoskeleton and end effector accurately, which is necessary for acquiring the upper-limb exoskeleton center of gravity and stability control of whole-body exoskeleton. In order to verify the effectiveness of the proposed method, we performed load handling and operational stability experiments. The experimental results showed that the proposed method realized the expected function.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qing Miao ◽  
Mingming Zhang ◽  
Yupu Wang ◽  
Sheng Q. Xie

This paper proposed a bilateral upper-limb rehabilitation device (BULReD) with two degrees of freedom (DOFs). The BULReD is portable for both hospital and home environment, easy to use for therapists and patients, and safer with respect to upper-limb robotic exoskeletons. It was implemented to be able to conduct both passive and interactive training, based on system kinematics and dynamics, as well as the identification of real-time movement intention of human users. Preliminary results demonstrate the potential of the BULReD for clinical applications, with satisfactory position and interaction force tracking performance. Future work will focus on the clinical evaluation of the BULReD on a large sample of poststroke patients.


2012 ◽  
Vol 29 (1) ◽  
pp. 35-44 ◽  
Author(s):  
T.-M. Wu ◽  
D.-Z. Chen

ABSTRACTResistance training has been shown to be effective for developing musculoskeletal strength and is recommended by many major health organizations, such as the American College of Sports Medicine and the American Heart Association. This form of training is available for most populations, including adolescents, healthy adults, the elderly, and the clinical population. Resistance training equipment design relies heavily on the analysis of human movement. Dynamic models of human movement help researchers identify key forces, movements, and movement patterns that should be measured. An at-home resistance training upper limb exoskeleton has been designed with a three-degree-of-freedom shoulder joint and a one-degree-of-freedom elbow joint to allow movement of the upper limb at single and multiple joints in different planes. The exoskeleton can continuously increase the resistance as the spring length changes to train more muscle groups and to reduce the potential risk of muscle injury to the upper limb by free weights and training equipment. The objectives of this research were to develop a dynamic model of the spring-loaded upper limb exoskeleton and to evaluate this model by adopting an appropriate motion analysis system to verify our hypotheses and to determine the optimal configuration of a spring-loaded upper limb exoskeleton for further verification studies.


2020 ◽  
Vol 10 (20) ◽  
pp. 7146
Author(s):  
Lucas D. L. da Silva ◽  
Thiago F. Pereira ◽  
Valderi R. Q. Leithardt ◽  
Laio O. Seman ◽  
Cesar A. Zeferino

Exoskeletons are wearable mobile robots that combine various technologies to enable limb movement with greater strength and endurance, being used in several application areas, such as industry and medicine. In this context, this paper presents the development of a hybrid control method for exoskeletons, combining admission and impedance control based on electromyographic input signals. A proof of concept of a robotic arm with two degrees of freedom, mimicking the functions of a human’s upper limb, was built to evaluate the proposed control system. Through tests that measured the discrepancy between the angles of the human joint and the joint of the exoskeleton, it was possible to determine that the system remained within an acceptable error range. The average error is lower than 4.3%, and the robotic arm manages to mimic the movements of the upper limbs of a human in real-time.


Sign in / Sign up

Export Citation Format

Share Document