scholarly journals Mapping collective behavior in the big-data era

2014 ◽  
Vol 37 (1) ◽  
pp. 63-76 ◽  
Author(s):  
R. Alexander Bentley ◽  
Michael J. O'Brien ◽  
William A. Brock

AbstractThe behavioral sciences have flourished by studying how traditional and/or rational behavior has been governed throughout most of human history by relatively well-informed individual and social learning. In the online age, however, social phenomena can occur with unprecedented scale and unpredictability, and individuals have access to social connections never before possible. Similarly, behavioral scientists now have access to “big data” sets – those from Twitter and Facebook, for example – that did not exist a few years ago. Studies of human dynamics based on these data sets are novel and exciting but, if not placed in context, can foster the misconception that mass-scale online behavior is all we need to understand, for example, how humans make decisions. To overcome that misconception, we draw on the field of discrete-choice theory to create a multiscale comparative “map” that, like a principal-components representation, captures the essence of decision making along two axes: (1) aneast–westdimension that represents the degree to which an agent makes a decision independently versus one that is socially influenced, and (2) anorth–south dimensionthat represents the degree to which there is transparency in the payoffs and risks associated with the decisions agents make. We divide the map into quadrants, each of which features a signature behavioral pattern. When taken together, the map and its signatures provide an easily understood empirical framework for evaluating how modern collective behavior may be changing in the digital age, including whether behavior is becoming more individualistic, as people seek out exactly what they want, or more social, as people become more inextricably linked, even “herdlike,” in their decision making. We believe the map will lead to many new testable hypotheses concerning human behavior as well as to similar applications throughout the social sciences.

2021 ◽  
Vol 10 (2) ◽  
pp. 36
Author(s):  
Michael Weinhardt

While big data (BD) has been around for a while now, the social sciences have been comparatively cautious in its adoption for research purposes. This article briefly discusses the scope and variety of BD, and its research potential and ethical implications for the social sciences and sociology, which derive from these characteristics. For example, BD allows for the analysis of actual (online) behavior and the analysis of networks on a grand scale. The sheer volume and variety of data allow for the detection of rare patterns and behaviors that would otherwise go unnoticed. However, there are also a range of ethical issues of BD that need consideration. These entail, amongst others, the imperative for documentation and dissemination of methods, data, and results, the problems of anonymization and re-identification, and the questions surrounding the ability of stakeholders in big data research and institutionalized bodies to handle ethical issues. There are also grave risks involved in the (mis)use of BD, as it holds great value for companies, criminals, and state actors alike. The article concludes that BD holds great potential for the social sciences, but that there are still a range of practical and ethical issues that need addressing.


2021 ◽  
Author(s):  
Kristia M. Pavlakos

Big Data1is a phenomenon that has been increasingly studied in the academy in recent years, especially in technological and scientific contexts. However, it is still a relatively new field of academic study; because it has been previously considered in mainly technological contexts, more attention needs to be drawn to the contributions made in Big Data scholarship in the social sciences by scholars like Omar Tene and Jules Polonetsky, Bart Custers, Kate Crawford, Nick Couldry, and Jose van Dijk. The purpose of this Major Research Paper is to gain insight into the issues surrounding privacy and user rights, roles, and commodification in relation to Big Data in a social sciences context. The term “Big Data” describes the collection, aggregation, and analysis of large data sets. While corporations are usually responsible for the analysis and dissemination of the data, most of this data is user generated, and there must be considerations regarding the user’s rights and roles. In this paper, I raise three main issues that shape the discussion: how users can be more active agents in data ownership, how consent measures can be made to actively reflect user interests instead of focusing on benefitting corporations, and how user agency can be preserved. Through an analysis of social sciences scholarly literature on Big Data, privacy, and user commodification, I wish to determine how these concepts are being discussed, where there have been advancements in privacy regulation and the prevention of user commodification, and where there is a need to improve these measures. In doing this, I hope to discover a way to better facilitate the relationship between data collectors and analysts, and user-generators. 1 While there is no definitive resolution as to whether or not to capitalize the term “Big Data”, in capitalizing it I chose to conform with such authors as boyd and Crawford (2012), Couldry and Turow (2014), and Dalton and Thatcher (2015), who do so in the scholarly literature.


Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


2015 ◽  
Vol 14 (4) ◽  
pp. 587-608
Author(s):  
Hanno Scholtz

Among schools of thought in comparative research, Rational Choice Theory (rct) is both the most systematic and the most contested. rct lacks a “classical” foundation but offers a clear internal theory structure. The rationality assumption contains an unquestioned heuristic aspect, although the determinants of choice (especially preferences) lack a universally accepted solution. The choice aspect addresses the understanding of social phenomena as the result of individual actions seen in light of the possible alternatives. This view unifies scholars in the Rational Choice tradition and leads to the macro-micro-macro-scheme. Micro-oriented comparative research has flourished through the availability of multi-level data sets in fields such as social capital theory, social stratification and mobility, including educational attainment or the inclusion of migrants, family studies, criminology, and labor markets. Institutional rct-based comparative research has addressed welfare states, religion, and general questions. In both aspects, rct leaves room for further productivity in comparative research.


2013 ◽  
Vol 1 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Abdelkader Baaziz ◽  
Luc Quoniam

“Big Data is the oil of the new economy” is the most famous citation during the three last years. It has even been adopted by the World Economic Forum in 2011. In fact, Big Data is like crude! It’s valuable, but if unrefined it cannot be used. It must be broken down, analyzed for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big Data. Understanding and leveraging data in the upstream segment enables firms to remain competitive throughout planning, exploration, delineation, and field development.Oil Gas Companies conduct advanced geophysics modeling and simulation to support operations where 2D, 3D 4D Seismic generate significant data during exploration phases. They closely monitor the performance of their operational assets. To do this, they use tens of thousands of data-collecting sensors in subsurface wells and surface facilities to provide continuous and real-time monitoring of assets and environmental conditions. Unfortunately, this information comes in various and increasingly complex forms, making it a challenge to collect, interpret, and leverage the disparate data. As an example, Chevron’s internal IT traffic alone exceeds 1.5 terabytes a day.Big Data technologies integrate common and disparate data sets to deliver the right information at the appropriate time to the correct decision-maker. These capabilities help firms act on large volumes of data, transforming decision-making from reactive to proactive and optimizing all phases of exploration, development and production. Furthermore, Big Data offers multiple opportunities to ensure safer, more responsible operations. Another invaluable effect of that would be shared learning.The aim of this paper is to explain how to use Big Data technologies to optimize operations. How can Big Data help experts to decision-making leading the desired outcomes?Keywords:Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation; Decision-making under Uncertainty


Author(s):  
Mihai Deju ◽  
Petrică Stoica

Framing accounting as a science has been carried out in close connection with the development of knowledge in this field and with the meaning given to this concept of “science”. Recognizing accounting as scientific field by specialists is due to the fact that it features a combination of accounting theory and methods for the development and application of these theories. Accounting is a scientific discipline in the social sciences because: it is a creation of the human being in response to practical needs; it reflects phenomena, activities and social facts; it addresses various groups of users (managers, bankers, shareholders, employees, tax bodies, etc.) which are an integral part of society; it offers information necessary to decision-making, most of the times with impact on the behaviour of individuals; it is influenced by the economic, social, legal and political environment, that is by social phenomena.


2021 ◽  
Author(s):  
Kristia M. Pavlakos

Big Data1is a phenomenon that has been increasingly studied in the academy in recent years, especially in technological and scientific contexts. However, it is still a relatively new field of academic study; because it has been previously considered in mainly technological contexts, more attention needs to be drawn to the contributions made in Big Data scholarship in the social sciences by scholars like Omar Tene and Jules Polonetsky, Bart Custers, Kate Crawford, Nick Couldry, and Jose van Dijk. The purpose of this Major Research Paper is to gain insight into the issues surrounding privacy and user rights, roles, and commodification in relation to Big Data in a social sciences context. The term “Big Data” describes the collection, aggregation, and analysis of large data sets. While corporations are usually responsible for the analysis and dissemination of the data, most of this data is user generated, and there must be considerations regarding the user’s rights and roles. In this paper, I raise three main issues that shape the discussion: how users can be more active agents in data ownership, how consent measures can be made to actively reflect user interests instead of focusing on benefitting corporations, and how user agency can be preserved. Through an analysis of social sciences scholarly literature on Big Data, privacy, and user commodification, I wish to determine how these concepts are being discussed, where there have been advancements in privacy regulation and the prevention of user commodification, and where there is a need to improve these measures. In doing this, I hope to discover a way to better facilitate the relationship between data collectors and analysts, and user-generators. 1 While there is no definitive resolution as to whether or not to capitalize the term “Big Data”, in capitalizing it I chose to conform with such authors as boyd and Crawford (2012), Couldry and Turow (2014), and Dalton and Thatcher (2015), who do so in the scholarly literature.


2022 ◽  
pp. 411-429
Author(s):  
Kubra Ozer ◽  
Mehmet Altug Sahin ◽  
Gurel Cetin

New technological requirements and needs of today's world are forcing cities to transform into smart cities and smart destinations in tourism cases. Smart destinations are focused on enhancing the tourist experience while also supporting the decision-making process, sustaining effective usage of resources, and maintaining sustainability. Big data has started to act as a reliable resource that assists these processes and offers alternative solution methods. Improvements in the usage of big data within the framework of smart destination management systems will also provide new insights and understandings about heritage sites and their management. Istanbul and the Sultanahmet region, which were included in the UNESCO World Heritage List, form the main domain of this chapter. This research aims to reveal any significant differences between Istanbul Wi-Fi data, Sultanahmet Wi-Fi data, and Istanbul Arrivals data. Kruskal-Wallis Test was conducted for comparing these data sets for 28 countries, and recommendations are presented.


Author(s):  
Longzhi Yang ◽  
Jie Li ◽  
Noe Elisa ◽  
Tom Prickett ◽  
Fei Chao

AbstractBig data refers to large complex structured or unstructured data sets. Big data technologies enable organisations to generate, collect, manage, analyse, and visualise big data sets, and provide insights to inform diagnosis, prediction, or other decision-making tasks. One of the critical concerns in handling big data is the adoption of appropriate big data governance frameworks to (1) curate big data in a required manner to support quality data access for effective machine learning and (2) ensure the framework regulates the storage and processing of the data from providers and users in a trustworthy way within the related regulatory frameworks (both legally and ethically). This paper proposes a framework of big data governance that guides organisations to make better data-informed business decisions within the related regularity framework, with close attention paid to data security, privacy, and accessibility. In order to demonstrate this process, the work also presents an example implementation of the framework based on the case study of big data governance in cybersecurity. This framework has the potential to guide the management of big data in different organisations for information sharing and cooperative decision-making.


2021 ◽  
Vol 5 (1) ◽  
pp. 12-17
Author(s):  
Mykhailo Mozhaiev ◽  
Pavlo Buslov

The object of the research are methods and algorithms of optimizing of the Big Data transformation to build a social profile model, the subject of the research are methods of constructing of a social profile. For decision-making person, the problem of scientific methodological and instrumental re-equipment is relevant for the effective fulfillment of a set of managerial tasks and confronting of fundamentally new challenges and threats in society. This task is directly related to the problem of building of a model of the social profile of both the individual and the social group as a whole. Therefore, the problem of optimizing of methods of constructing of a mathematical model of a social profile is certainly relevant. During the research, methods of the mathematical apparatus of graph theory, database theory and the concept of non-relational data stores, Big Data technology, text analytics technologies, parallel data processing methods, methods of neural networks' using, methods of multimedia data analyzing were used. These methods were integrated into the general method, called the method of increasing of the efficiency of constructing of a mathematical model of a social profile. The proposed method improves the adequacy of the social profile model, which will significantly improve and simplify the functioning of information systems for decision-making based on knowledge of the social advantages of certain social groups, which will allow dynamic correction of their behavior. The obtained results of testing the method make it possible to consider it as an effective tool for obtaining of an objective information model of a social portrait of a social group. This is because the correctness of setting and solving of the problem ensured that adequate results were obtained. Unlike the existing ones, the proposed modeling method, which uses an oriented graph, allows to improve significantly the quality and adequacy of this process. Further research should be directed towards the implementation of proposed theoretical developments in real decision-making systems. This will increase the weight of automated decision-making systems for social climate analysis.


Sign in / Sign up

Export Citation Format

Share Document