Cultural evolution need not imply group selection

2016 ◽  
Vol 39 ◽  
Author(s):  
Dorsa Amir ◽  
Matthew R. Jordan ◽  
David G. Rand

AbstractRicherson et al. make a compelling case for cultural evolution. In focusing on cultural group selection, however, they neglect important individual-level accounts of cultural evolution. While scientific discourse typically links cultural evolution to group selection and genetic evolution to individual selection, this association is due to historical accident only. We thus call for more consideration of individual-level cultural evolution.

2015 ◽  
Vol 15 (3-4) ◽  
pp. 235-253 ◽  
Author(s):  
Taylor Davis

In the scientific literature on religious evolution, two competing theories appeal to group selection to explain the relationship between religious belief and altruism, or costly, prosocial behavior. Both theories agree that group selection plays an important role in cultural evolution, affecting psychological traits that individuals acquire through social learning. They disagree, however, about whether group selection has also played a role in genetic evolution, affecting traits that are inherited genetically. Recently, Jonathan Haidt has defended the most fully developed account based on genetic group selection, and I argue here that problems with this account reveal good reasons to doubt that genetic group selection has played any important role in human evolution at all. Thus, considering the role of group selection in religious evolution is important not just because of what it reveals about religious psychology and religious evolution, but also because of what it reveals about the role of group selection in human evolution more generally.


Author(s):  
V.S. Friedmann

The article provides an overview of the works on different species of birds and mammals (and other vertebrates to a lesser extent), which show the origin of group adaptations that benefit society as a whole or the entire population developing a new landscape, but costly and / or risky for each of the individuals. Their formation and development are recorded in three cases: urbanization of “wild” birds and mammal species culminating in the emergence of specialized urban populations; animal communication, when individuals in communities interact not directly, but the action of one and the counter-action of the other is mediated by a specific set of demonstrations, visual and acoustic, with a characteristic shape and signal function; in the formation of a family-group lifestyle of rodents. The objective of the research was to investigate whether the formation of group adaptations (at least in these three cases) really requires “multiplication of entities” – the use of the concept of group selection or, like the others, these adaptations can be explained by the action of individual selection. In all three cases, it turns out that the formation of the corresponding group adaptations is an action of individual selection, but influencing individuals not independent, but connected by a certain structure – social or population (spatial-ethological) to the corresponding system of supra-individual level. In all cases it turns out that first of all the structure of the system is transformed, and only then there is the process of selection of individuals who are the most adapted to the changed relationships, i.e. the selection is stabilizing rather than moving. So we pass between Scylla of socio-biological explanations and Charybdis of group selection. This is necessary because both of them are useless as a general explanation of the origin of group adaptations.


2017 ◽  
Author(s):  
Alex Mesoudi

AbstractHow do migration and acculturation (i.e. psychological or behavioral change resulting from migration) affect within- and between-group cultural variation? Here I answer this question by drawing analogies between genetic and cultural evolution. Population genetic models show that migration rapidly breaks down between-group genetic structure. In cultural evolution, however, migrants or their descendants can acculturate to local behaviors via social learning processes such as conformity, potentially preventing migration from eliminating between-group cultural variation. An analysis of the empirical literature on migration suggests that acculturation is common, with second and subsequent migrant generations shifting, sometimes substantially, towards the cultural values of the adopted society. Yet there is little understanding of the individual-level dynamics that underlie these population-level shifts. To explore this formally, I present models quantifying the effect of migration and acculturation on between-group cultural variation, for both neutral and costly cooperative traits. In the models, between-group cultural variation, measured using F statistics, is eliminated by migration and maintained by conformist acculturation. The extent of acculturation is determined by the strength of conformist bias and the number of demonstrators from whom individuals learn. Acculturation is countered by assortation, the tendency for individuals to preferentially interact with culturally-similar others. Unlike neutral traits, cooperative traits can additionally be maintained by payoff-biased social learning, but only in the presence of strong sanctioning institutions. Overall, the models show that surprisingly little conformist acculturation is required to maintain realistic amounts of between-group cultural diversity. While these models provide insight into the potential dynamics of acculturation and migration in cultural evolution, they also highlight the need for more empirical research into the individual-level learning biases that underlie migrant acculturation.


2018 ◽  
Author(s):  
Kenny Smith

Recent work suggests that linguistic structure develops through cultural evolution, as a consequence of the repeated cycle of learning and use by which languages persist. This work has important implications for our understanding of the evolution of the cognitive basis for language: in particular, human language and the cognitive capacities underpinning it are likely to have been shaped by co-evolutionary processes, where the cultural evolution of linguistic systems is shaped by and in turn shapes the biological evolution of the capacities underpinning language learning. I review several models of this co-evolutionary process, which suggest that the precise relationship between evolved biases in individuals and the structure of linguistic systems depends on the extent to which cultural evolution masks or unmasks individual-level cognitive biases from selection. I finish by discussing how these co-evolutionary models might be extended to cases where the biases involved in learning are themselves shaped by experience, as is the case for language.


2020 ◽  
Author(s):  
Fredrik Jansson ◽  
Elliot Aguilar ◽  
Alberto Acerbi ◽  
Magnus Enquist

A specific goal of the field of cultural evolution is to understand how processes of transmission and selection at the individual level lead to population-wide patterns of cultural diversity and change. Models of cultural evolution have typically assumed that traits are independent of one another and essentially exchangeable. But culture has a structure: traits bear relationships to one another that affect the transmission and selection process itself. Here we introduce a modelling framework to explore the effect of cultural structure on the process of learning. Through simulations, we find that introducing this simple structure changes the cultural dynamics. Based on a basic filtering mechanism for parsing these relationships, more elaborate cultural filters emerge. In a mostly incompatible cultural domain of traits, these filters organise culture into mostly (but not fully) consistent and stable systems. Incompatible domains produce small homogeneous cultures, while more compatibility increases size, diversity, and group divergence. When individuals copy based on a trait's features (here, its compatibility relationships) they produce more homogeneous cultures than when they copy based on the agent carrying the cultural trait. We discuss the implications of considering cultural systems and filters in the dynamics of cultural change.


Author(s):  
Kevin N. Laland

This chapter traces the evolution of human civilization from nomadic hunter-gatherer societies to the advent of agriculture and its large-scale impacts on the world. It describes this history in three ages of adaptive evolution. First, there was the age in which biological evolution dominated, in which we adapted to the circumstances of life in a manner no different from every other creature. Second came the age when gene–culture coevolution was in the ascendency. Through cultural activities, our ancestors set challenges to which they adapted biologically. In doing so, they released the brake that the relatively slow rate of independent environmental change imposes on other species. The results are higher rates of morphological evolution in humans compared to other mammals, with human genetic evolution reported as accelerating more than a hundredfold over the last 40,000 years. Now we live in the third age, where cultural evolution dominates. Cultural practices provide humanity with adaptive challenges, but these are then solved through further cultural activity, before biological evolution gets moving.


Author(s):  
Alberto Acerbi

The tendency to copy the majority is the topic of the fourth chapter. The fact that online popularity produces long-tailed distributions is often presented as an argument to show the power of online social influence. However, long-tailed distributions are a trademark of many cultural domains, from first names to dog breeds. In addition, these distributions do not necessarily imply the existence of an individual-level tendency to prefer popular things, but they can be the result of bare availability: the more examples of an item, the more likely we will encounter it, and the more likely we will become interested in it. Conformity is next considered: as defined in cultural evolution, conformity implies an effective tendency to copy the majority. As for celebrities, various experiments are reviewed, and the author defends a view for which conformity is far from automatic, as it interacts with many other psychological tendencies. How digital technologies permit radically new forms of popularity advertisements, from the real-time quantification of “likes” in social media to the explosion of consumer reviews, or top-lists of virtually everything, is also examined and discussed in relation to cultural evolution theory.


Author(s):  
Samir Okasha

‘Levels of selection’ examines the levels-of-selection question, which asks whether natural selection acts on individuals, genes, or groups. This question is one of the most fundamental in evolutionary biology, and the subject of much controversy. Traditionally, biologists have mostly been concerned with selection and adaptation at the individual level. But, in theory, there are other possibilities, including selection on sub-individual units such as genes and cells, and on supra-individual units such as groups and colonies. Group selection, altruistic behaviour, kin selection, the gene-centric view of evolution, and the major transitions in evolution are all discussed.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190364 ◽  
Author(s):  
Deborah E. Shelton ◽  
Richard E. Michod

The Price equation embodies the ‘conditions approach’ to evolution in which the Darwinian conditions of heritable variation in fitness are represented in equation form. The equation can be applied recursively, leading to a partition of selection at the group and individual levels. After reviewing the well-known issues with the Price partition, as well as issues with a partition based on contextual analysis, we summarize a partition of group and individual selection based on counterfactual fitness, the fitness that grouped cells would have were they solitary. To understand ‘group selection’ in multi-level selection models, we assume that only group selection can make cells suboptimal when they are removed from the group. Our analyses suggest that there are at least three kinds of selection that can be occurring at the same time: group-specific selection along with two kinds of individual selection, within-group selection and global individual selection. Analyses based on counterfactual fitness allow us to specify how close a group is to being a pseudo-group, and this can be a basis for quantifying progression through an evolutionary transition in individuality (ETI). During an ETI, fitnesses at the two levels, group and individual, become decoupled, in the sense that fitness in a group may be quite high, even as counterfactual fitness goes to zero. This article is part of the theme issue ‘Fifty years of the Price equation’.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw0609 ◽  
Author(s):  
Marco Smolla ◽  
Erol Akçay

Cultural evolution relies on the social transmission of cultural traits along a population’s social network. Research indicates that network structure affects information spread and thus the capacity for cumulative culture. However, how network structure itself is driven by population-culture co-evolution remains largely unclear. We use a simple model to investigate how populations negotiate the trade-off between acquiring new skills and getting better at existing skills and how this trade-off shapes social networks. We find unexpected eco-evolutionary feedbacks from culture onto social networks and vice versa. We show that selecting for skill generalists results in sparse networks with diverse skill sets, whereas selecting for skill specialists results in dense networks and a population that specializes on the same few skills on which everyone is an expert. Our model advances our understanding of the complex feedbacks in cultural evolution and demonstrates how individual-level behavior can lead to the emergence of population-level structure.


Sign in / Sign up

Export Citation Format

Share Document