scholarly journals Tomography of AM Her and QQ Vul

2004 ◽  
Vol 190 ◽  
pp. 251-257 ◽  
Author(s):  
A. Staude ◽  
A. D. Schwope ◽  
P. Hedelt ◽  
A. Rau ◽  
R. Schwarz

AbstractWe present optical high-resolution spectroscopy of AM Her and QQ Vul. Making use of indirect imaging techniques (Doppler and Roche tomography), we are able to make details visible, which a model of these systems has to be able to account for. Especially the emission line data cannot be explained by current models of polars.

2003 ◽  
Vol 212 ◽  
pp. 251-252 ◽  
Author(s):  
Watson P. Varricatt

Many late WC type Wolf-Rayet (WR) stars are known to form dust in their winds. While, in the case of episodic dust makers, it is now clear that dust formation takes place due to a colliding wind phenomenon, we still do not know for sure if binarity is the main reason for dust formation in persistent dust makers. This work is to understand, if persistent dust formation is also due to colliding winds in close binary systems. A systematic search for colliding winds is taken up via high resolution spectroscopy of the He i λ1.083μm emission line. Preliminary indications of binarity in many persistent dust makers are seen.


2003 ◽  
Vol 406 (1) ◽  
pp. 141-148 ◽  
Author(s):  
K. J. van der Heyden ◽  
J. A. M. Bleeker ◽  
J. S. Kaastra ◽  
J. Vink

2015 ◽  
Vol 11 (A29B) ◽  
pp. 514-516
Author(s):  
Joanna Molenda-Żakowicz ◽  
Peter De Cat ◽  
Jian-Ning Fu ◽  
An-Bing Ren ◽  
Antonio Frasca ◽  
...  

AbstractThe Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) at the Xinglong observatory in China is a 4-m telescope equipped with 4,000 optical fibres. In 2010, we initiated the LAMOST-Kepler project which aimed at collecting low-resolution spectra of stars from the Kepler Input Catalog covering uniformly the Kepler field of view. The first round of the LAMOST-Kepler project has been completed in September 2014 resulting in more than 100,000 low-resolution spectra. We used those data to derive the effective temperature, the surface gravity, and the mean metallicity of our targets, as well as to detect fast rotators, and to identify emission-line stars. Our results are consistent with those reported in the literature and derived from high-resolution spectroscopy. The second round of the LAMOST-Kepler project will allow to improve the coverage of the Kepler field and to repeat observations of selected targets.


Author(s):  
M Martínez-Chicharro ◽  
V Grinberg ◽  
J M Torrejón ◽  
N Schulz ◽  
L Oskinova ◽  
...  

Abstract We present an analysis of the first observation of the iconic High Mass X-ray Binary 4U 1700−37 with the Chandra High Energy Transmission Gratings during an X-ray eclipse. The goal of the observation was to study the structure/physical conditions in the clumpy stellar wind through high resolution spectroscopy. We find that: a) emission line brightness from K shell transitions, corresponding to near neutral species, directly correlates with continuum illumination. However, these lines do not greatly diminish during eclipse. This is readily explained if fluorescence Kα emission comes from the bulk of the wind. b) The highly ionised Fe xxv and Fe xxvi Lyα diminish during eclipse. Thus, they must be produced in the vicinity of the compact object where log ξ > 3. c) to describe the emission line spectrum, the sum of two self consistent photo ionisation models with low ionisation (log ξ ∼ −1) and high ionisation (log ξ ∼ 2.4) is required. From their emission measures, the clump-to-interclump density ratio can be estimated to be nc/ni ∼ 300. To fit the complex He-like Si xiii profile, the plasma requires a broadening with vbulk ∼ 840 km s−1. Reproducing the observed r ≈ f line fluxes requires the addition of a third collisionally ionised plasma. d) Emission lines widths appear unresolved at the hetg gratings resolution with exception of Silicon. There is no clear radial segregation between (quasi)neutral and ionised species, consistent with cold wind clumps interspersed in a hot rarefied interclump medium.


2021 ◽  
Vol 34 ◽  
pp. 59-64
Author(s):  
A.S. Nodyarov ◽  
A.S. Miroshnichenko ◽  
S.A. Khokhlov ◽  
S.V. Zharikov ◽  
N. Manset ◽  
...  

Optical high-resolution spectroscopic observations of the emission-line star MWC645 are presented. The spectrum exhibits strong variable double-peaked Balmer emission lines as well as low-excitation emission lines of FeII, [FeII], and [OI] which are signatures of the B[e] phenomenon, while lines of helium have not been found. In addition to the emission lines, for the first time we identified absorption lines of neutral metals (e.g., LiI 6708  A, CaI 6717 A, and a number of FeI and TiI lines) that indicate the presence of a cool component in the system. The heliocentric radial velocity measured in our best spectrum was found to be −65.1±1.0 kms −1 for the emission lines and −23.2±0.4 kms −1 for the absorption lines. Using a combination of photometric and spectroscopic data as well as the Gaia EDR3 distance (D=6.5±0.9 kpc), we disentangled the component contributions and estimated their temperatures and luminosities (∼15000 K and ∼4000 K, log L/L ? = 3.8±0.2 and 2.8±0.2 for the hot and cool component, respectively).


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Author(s):  
James Pawley ◽  
David Joy

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured and then plotted as a corresponding intensity in an image. The spatial resolution of such an image is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact area. A third limitation emerges from the fact that the probing beam is composed of a number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller). As in all imaging techniques, the limiting signal contrast required to recognize a morphological structure is constrained by this statistical consideration. The only way to overcome this limit is to increase either the contrast of the measured signal or the number of beam/specimen interactions detected. Unfortunately, these interactions deposit ionizing radiation that may damage the very structure under investigation. As a result, any practical consideration of the high resolution performance of the SEM must consider not only the size of the interaction volume but also the contrast available from the signal producing the image and the radiation sensitivity of the specimen.


Author(s):  
C. Barry Carter

This paper will review the current state of understanding of interface structure and highlight some of the future needs and problems which must be overcome. The study of this subject can be separated into three different topics: 1) the fundamental electron microscopy aspects, 2) material-specific features of the study and 3) the characteristics of the particular interfaces. The two topics which are relevant to most studies are the choice of imaging techniques and sample preparation. The techniques used to study interfaces in the TEM include high-resolution imaging, conventional diffraction-contrast imaging, and phase-contrast imaging (Fresnel fringe images, diffuse scattering). The material studied affects not only the characteristics of the interfaces (through changes in bonding, etc.) but also the method used for sample preparation which may in turn have a significant affect on the resulting image. Finally, the actual nature and geometry of the interface must be considered. For example, it has become increasingly clear that the plane of the interface is particularly important whenever at least one of the adjoining grains is crystalline.A particularly productive approach to the study of interfaces is to combine different imaging techniques as illustrated in the study of grain boundaries in alumina. In this case, the conventional imaging approach showed that most grain boundaries in ion-thinned samples are grooved at the grain boundary although the extent of this grooving clearly depends on the crystallography of the surface. The use of diffuse scattering (from amorphous regions) gives invaluable information here since it can be used to confirm directly that surface grooving does occur and that the grooves can fill with amorphous material during sample preparation (see Fig. 1). Extensive use of image simulation has shown that, although information concerning the interface can be obtained from Fresnel-fringe images, the introduction of artifacts through sample preparation cannot be lightly ignored. The Fresnel-fringe simulation has been carried out using a commercial multislice program (TEMPAS) which was intended for simulation of high-resolution images.


Sign in / Sign up

Export Citation Format

Share Document