A Swept-Up Molecular Bubble in L1551

1989 ◽  
Vol 120 ◽  
pp. 260-263
Author(s):  
Saeko S. Hayashi ◽  
Masahiko Hayashi ◽  
Norio Kaifu

The environment of the young stellar object IRS5 in L1551 dark cloud is a representative of the “protostellar disk and outflow” systems found in star forming regions. The bipolar molecular outflow there was discovered as the first of its kind a decade ago (Snell, Loren, and Plambeck 1980). Its location in the sky, that is, its proximity (160 pc), isolation, and its almost edge-on inclination have favored the observation in great detail. IRS5 is thought to have the spectral type G - K (Mundt et al. 1985) similar to the Sun, with its dominant activity in the stellar wind, and not in the UV radiation as in massive protostars. The blueshifted and redshifted outflow lobes are clearly resolved into a pair of shell structures. The successive studies, mostly in CO lines, have led to a model of the outflow in which the molecular material is accelerated at the edge of a cavity evacuated by the protostellar wind (e.g. Uchida et al. 1987, Rainey et al. 1987, Moriarty-Schieven and Snell 1988).

1986 ◽  
Vol 64 (4) ◽  
pp. 431-433 ◽  
Author(s):  
Ronald L. Snell

Observational studies of the structure and kinematics of the supersonic molecular gas in star-forming regions are reviewed. These studies have suggested that the bulk of the high-velocity gas may be ambient-cloud material swept up by a collimated stellar wind. The actual structures of these outflows, however, are poorly understood. One source that may provide a better understanding of molecular outflows is that in the nearby dark cloud L1551. New observations of this outflow are presented and discussed in context of the models proposed by Snell and Schloerb.


2012 ◽  
Vol 8 (S287) ◽  
pp. 391-395 ◽  
Author(s):  
Takumi Nagayama ◽  

AbstractWe conducted the astrometry of H2O masers in the Galactic star-forming regions ON1 and ON2N with the VLBI Exploration of Radio Astrometry (VERA). The measured distances to ON1 and ON2N are 2.47±0.11 kpc and 3.83±0.13 kpc, respectively. In the case that ON1 and ON2N are on a perfect circular rotation, we estimate the angular rotation velocity of the Galactic rotation at the Sun (the ratio of the Galactic constants) to be 28 ± 2 km s−1 kpc−1 using the measured distances and three-dimensional velocity components of ON1 and ON2N. This value is larger than the IAU recommended value of 25.9 km s−1 kpc−1, but consistent with other results recently obtained with the VLBI technique.


1993 ◽  
Vol 10 (3) ◽  
pp. 247-249 ◽  
Author(s):  
C.M. Wright ◽  
D.K. Aitken ◽  
C.H. Smith ◽  
P.F. Roche

AbstractThe star-formation process is an outstanding and largely unsolved problem in astrophysics. The role of magnetic fields is unclear but is widely considered to be important at all stages of protostellar evolution, from cloud collapse to ZAMS. For example, in some hydromagnetic models, the field may assist in removing angular momentum, thereby driving accretion and perhaps bipolar outflows.Spectropolarimetry between 8 and 13μm provides information on the direction of the transverse component of a magnetic field through the alignment of dust grains. We present results of 8–13μm spectropolarimetric observations of a number of bipolar molecular outflow sources, and compare the field directions observed with the axes of the outflows and putative disk-like structures observed to be associated with some of the objects. There is a strong correlation, though so far with limited statistics, between the magnetic field and disk orientations. We compare our results with magnetic field configurations predicted by current models for hydromagnetically driven winds from the disks around Young Stellar Objects (YSOs). Our results appear to argue against the Pudritz and Norman model and instead seem to support the Uchida and Shibata model.


1994 ◽  
Vol 140 ◽  
pp. 60-61
Author(s):  
Takahiro Iwata ◽  
Hiroshi Takaba ◽  
Kin-Ya Matsumoto ◽  
Seiji Kameno ◽  
Noriyuki Kawaguchi

A molecular outflow is one of the most conspicuous active phenomena associated with protostars, and the kinetic energy of its outflowing mass is as large as that of random motions of ambient molecular cloud, which suggests that outflow has dynamically influence on ambient molecular gas. Possible observational evidence which suggests the existence of dynamical interaction between molecular outflow and ambient molecular cloud has been detected in several star forming regions (Fukui et al. 1986; Iwata et al. 1988). Recent detections of H2O maser emission associated with low-mass protostars (e.g. Comoretto et al. 1990) also suggest that there still exist active phenomena in the low-mass star forming regions.Molecular outflow ρ Oph-East, discovered toward a low-mass protostar IRAS 16293-2422 (Fukui et al. 1986), has been known as a site of dynamical interaction between molecular outflowing gas and ambient molecular cloud by CO and NH3 observation (Mizuno et al. 1990). Existence of several strong H2O maser spots (Wilking & Claussen 1987; Wotten 1989; Terebey et al. 1992) also suggests that active phenomena are occurring in this region. In this paper, we report our result of H2O maser observation for molecular outflow ρ Oph-East with milli-arcsecond resolution by VLBI.


2021 ◽  
Vol 503 (4) ◽  
pp. 6112-6135
Author(s):  
Peter Senchyna ◽  
Daniel P Stark ◽  
Stéphane Charlot ◽  
Jacopo Chevallard ◽  
Gustavo Bruzual ◽  
...  

ABSTRACT As deep spectroscopic campaigns extend to higher redshifts and lower stellar masses, the interpretation of galaxy spectra depends increasingly upon models for very young stellar populations. Here we present new HST/COS ultraviolet spectroscopy of seven nearby (<120 Mpc) star-forming regions hosting very young stellar populations (∼4–20 Myr) with optical Wolf–Rayet stellar wind signatures, ideal laboratories in which to benchmark these stellar models. We detect nebular C iii] in all seven, but at equivalent widths uniformly <10 Å. This suggests that even for very young stellar populations, the highest equivalent width C iii] emission at ≥15 Å is reserved for inefficiently cooled gas at metallicities at or below that of the SMC. The spectra also reveal strong C iv P-Cygni profiles and broad He ii emission formed in the winds of massive stars, including some of the most prominent He ii stellar wind lines ever detected in integrated spectra. We find that the latest stellar population synthesis prescriptions with improved treatment of massive stars nearly reproduce the entire range of stellar He ii wind strengths observed here. However, we find that these models cannot simultaneously match the strongest wind features alongside the optical nebular line constraints. This discrepancy can be naturally explained by an overabundance of very massive stars produced by a high incidence of binary mass transfer and mergers occurring on short ≲10 Myr time-scales, suggesting these processes may be crucial for understanding systems dominated by young stars both nearby and in the early Universe.


1987 ◽  
Vol 115 ◽  
pp. 81-82
Author(s):  
H. Takaba ◽  
Y. Fukui

L1641 is a large dark cloud which extends 6.3 degree2 to the south of the Orion nebula (Lynds 1962). This region contains a reflection nebula, NGC 1999, several emission line stars and Herbig-Haro objects and is thought to be a site of on-going star formation. A CO(J = 1-0) map obtained with the Nagoya 1.5 m telescope (Takano 1983) revealed that CO hot spots extend further to the north by ∼ 30′ from NGC 1999. This suggests that L1641 may contain other regions of recent star formation. Therefore, we have mapped the L1641 cloud to investigate if there are other star-forming regions in it.


2018 ◽  
Vol 619 ◽  
pp. A50 ◽  
Author(s):  
P. Grosbøl ◽  
G. Carraro

Context. The location of young sources in the Galaxy suggests a four-armed spiral structure, whereas tangential points of spiral arms observed in the integrated light at infrared and radio wavelengths indicate that only two arms are massive. Aims. Variable extinction in the Galactic plane and high light-to-mass ratios of young sources make it difficult to judge the total mass associated with the arms outlined by such tracers. The current objective is to estimate the mass associated with the Sagittarius arm by means of the kinematics of the stars across it. Methods. Spectra of 1726 candidate B- and A-type stars within 3◦ of the Galactic center (GC) were obtained with the FLAMES instrument at the VLT with a resolution of ≈6000 in the spectral range of 396–457 nm. Radial velocities were derived by least-squares fits of the spectra to synthetic ones. The final sample was limited to 1507 stars with either Gaia DR2 parallaxes or main-sequence B-type stars having reliable spectroscopic distances. Results. The solar peculiar motion in the direction of the GC relative to the local standard of rest (LSR) was estimated to U⊙ = 10.7 ± 1.3kms−1. The variation in the median radial velocity relative to the LSR as a function of distance from the sun shows a gradual increase from slightly negative values near the sun to almost 5 km s−1 at a distance of around 4 kpc. A sinusoidal function with an amplitude of 3.4 ± 1.3kms−1 and a maximum at 4.0 ± 0.6 kpc inside the sun is the best fit to the data. A positive median radial velocity relative to the LSR around 1.8 kpc, the expected distance to the Sagittarius arm, can be excluded at a 99% level of confidence. A marginal peak detected at this distance may be associated with stellar streams in the star-forming regions, but it is too narrow to be associated with a major arm feature. Conclusions. A comparison with test-particle simulations in a fixed galactic potential with an imposed spiral pattern shows the best agreement with a two-armed spiral potential having the Scutum–Crux arm as the next major inner arm. A relative radial forcing dFr ≈ 1.5% and a pattern speed in the range of 20–30 km s−1 kpc−1 yield the best fit. The lack of a positive velocity perturbation in the region around the Sagittarius arm excludes it from being a major arm. Thus, the main spiral potential of the Galaxy is two-armed, while the Sagittarius arm is an inter-arm feature with only a small mass perturbation associated with it.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 711-713
Author(s):  
Cara Battersby ◽  
Philip C. Myers ◽  
Yancy L. Shirley ◽  
Eric Keto ◽  
Helen Kirk

AbstractThe newly discovered Massive Molecular Filament (MMF) G32.02+0.05 (~ 70 pc long, 105 M⊙) has been shaped and compressed by older generations of massive stars. The similarity of this filament in physical structure (density profile, temperature) to much smaller star-forming filaments, suggests that the mechanism to form such filaments may be a universal process. The densest portion of the filament, apparent as an Infrared Dark Cloud (IRDC) shows a range of massive star formation signatures throughout. We investigate the kinematics in this filament and find widespread inverse P cygni asymmetric line profiles. These line asymmetries are interpreted as a signature of large-scale radial collapse. Using line asymmetries observed with optically thick HCO+ (1-0) and optically thin H13CO+ (1-0) across a range of massive star forming regions in the filament, we estimate the global radial infall rate of the filament to range from a few 100 to a few 1000 M⊙ Myr−1 pc−1. At its current infall rate the densest portions of the cloud will more than double their current mass within a Myr.


2018 ◽  
Vol 611 ◽  
pp. L3 ◽  
Author(s):  
Vlas Sokolov ◽  
Ke Wang ◽  
Jaime E. Pineda ◽  
Paola Caselli ◽  
Jonathan D. Henshaw ◽  
...  

High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s−1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.


1989 ◽  
Vol 120 ◽  
pp. 111-116
Author(s):  
Gilles Joncas ◽  
Daniel Durand ◽  
C. Kömpe ◽  
R.S. Roger

Star forming regions are one of the active components of the interstellar medium and as such play an important role in the galactic “ecosystem”. When massive young stars are borned they have a strong impact on their environment through their radiation flux and stellar wind. We are then facing complicated interplays between gas in different states (ionized, atomic and molecular), dust particles and the young stars. The understanding of these interplays can only be done using multifrequency observations. Such an endaveour is already in progress (see Joncas et al. 1988 and Kömpe et al. 1989). We will describe here the young star forming region S187 (Sharpless 1959). This gas complex is nearby (≈1 kpc) thus permitting high spatial resolution with medium size instruments. It contains a faint optically visible HII region ionized by an unidentified BO or BO.5 star. The associated molecular cloud, discovered by Blair et al. (1975), contains a molecular outflow (Bally and Lada 1983) to which an H2O maser is associated (Henkel et al. 1986).


Sign in / Sign up

Export Citation Format

Share Document