scholarly journals Effects of Structure Boundary Conditions and Snow-Pack Properties on Snow-Creep Pressures

1989 ◽  
Vol 13 ◽  
pp. 175-179
Author(s):  
D.M. McClung ◽  
J.O. Larsen

Structures placed in deep snow covers are subject to forces caused by interruption of the down-slope snow-pack deformation components. The resulting creep pressures are often the primary design consideration. In this paper, accurate field data (pressures) and theoretical analysis of the problem using a linear creep law to define snow deformation are presented. Results include analytical expressions for the pressures, and it is demonstrated that the resulting linear theory underestimates the mean pressures by about 20%. Higher accuracy will require that a nonlinear deformation law be formulated.

1989 ◽  
Vol 13 ◽  
pp. 175-179
Author(s):  
D.M. McClung ◽  
J.O. Larsen

Structures placed in deep snow covers are subject to forces caused by interruption of the down-slope snow-pack deformation components. The resulting creep pressures are often the primary design consideration. In this paper, accurate field data (pressures) and theoretical analysis of the problem using a linear creep law to define snow deformation are presented. Results include analytical expressions for the pressures, and it is demonstrated that the resulting linear theory underestimates the mean pressures by about 20%. Higher accuracy will require that a nonlinear deformation law be formulated.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
M. F. El-Amin ◽  
Shuyu Sun ◽  
Amgad Salama

Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).


2007 ◽  
Vol 21 (30) ◽  
pp. 5075-5089 ◽  
Author(s):  
HALA M. KHALIL ◽  
MOHAMMED M. SHABAT ◽  
SOFYAN A. TAYA ◽  
MAZEN M. ABADLA

In this work, we present an extensive theoretical analysis of nonlinear optical waveguide sensor. The waveguide under consideration consists of a thin dielectrica film surrounded by a self-focused nonlinear cladding and a linear substrate. The nonlinearity of the cladding is considered to be of Kerr-type. Both cases, when the effective refractive index is greater and when it is smaller than the index of the guiding layer, are discussed. The sensitivity of the effective refractive index to any change in the cladding index in evanescent optical waveguide sensor is derived for TM modes. Closed form analytical expressions and normalized charts are given to provide the conditions required for the sensor to exhibit its maximum sensitivity. The results are compared with those of the well-known linear evanescent waveguide sensors.


2011 ◽  
Vol 25 (12n13) ◽  
pp. 1041-1051 ◽  
Author(s):  
HO KHAC HIEU ◽  
VU VAN HUNG

Using the statistical moment method (SMM), the temperature and pressure dependences of thermodynamic quantities of zinc-blende-type semiconductors have been investigated. The analytical expressions of the nearest-neighbor distances, the change of volumes and the mean-square atomic displacements (MSDs) have been derived. Numerical calculations have been performed for a series of zinc-blende-type semiconductors: GaAs , GaP , GaSb , InAs , InP and InSb . The agreement between our calculations and both earlier other theoretical results and experimental data is a support for our new theory in investigating the temperature and pressure dependences of thermodynamic quantities of semiconductors.


1972 ◽  
Vol 1 (13) ◽  
pp. 55
Author(s):  
J. Kirkegarrd Jensen ◽  
Torben Sorenson

The paper describes a procedure for obtaining field data on the mean concentration of sediments in combination of waves and currents outside the breaker zone, as well as some results of such measurements. It is assumed that the current turbulence alone is responsible for the maintenance of the concentration profile above a thin layer close to the bottom, in which pick-up of sediments due to wave agitation takes place. This assumption gives a good agreement between field data and calculated concentration profiles.


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 103
Author(s):  
Aulia Isramaulana ◽  
Rizka Norjanah

On the project Periodic Maintenance of Road Sungai Lakum Pasar Kamis is a project implemented using heavy equipment. By using heavy equipment, will facilitate and accelerate the course of the project. The tools used must be considered maintenance, because it is very influential on the production tools and costs incurred for the use of the tool. This study aims to analyze the use of heavy equipment in the periodic Maintenance Project of road Sungai Lakum Pasar Kamis by using theoretical analysis based on field data. Analyzing the calculation is the productivity and cost of the equipment on the scope of work that is the work of the land, widening work and road shoulder work, grinding pavement work, and asphalt work, using Excel program as a tool in data processing so that the achievement of the use of heavy equipment available in finish the job. Based on the calculation obtained the price of theoretical analysis unit based on field data for the work of preferred stockpiles from the source of Rp. 310.994.714,2; Class B aggregate base layer Rp. 76.127.086,04; Aggregate base layer with hill excavation Rp. 59.705.050,39; Class A base aggregate layer Rp. 204.703.029,9; Asphalt lining resap coat liquid Rp. 3.038.436,28; Lataston coating foundation Rp. 306.997.682,6. Where the calculation of unit price based on field data is smaller than the unit price of the bid data.


1995 ◽  
Vol 32 (3) ◽  
pp. 545-552 ◽  
Author(s):  
B. Wang ◽  
Hugh M. French

Field measurements of frozen soil creep in the upper 3.0 m of permafrost indicate that creep occurs in both winter and summer. Between 1992 and 1993, the mean rate of creep ranged from 0.44 cm at 1.6 m depth to 0.16 cm at 2.8 m depth but there was extreme variability. Creep parameters n and A, as defined by the power flow law, were calculated from field data. Parameter n ranged between 1.96 and 2.29 and increased with depth, while A decreased with depth. Comparisons of creep rates for different permafrost environments suggest that ground temperature largely controls the magnitude of permafrost creep. Key words : permafrost, creep parameters, Tibet Plateau.


2019 ◽  
Vol 11 (20) ◽  
pp. 2378 ◽  
Author(s):  
Mauri Pelto

The Juneau Icefield Research Program (JIRP) has been examining the glaciers of the Juneau Icefield since 1946. The height of the transient snowline (TSL) at the end of the summer represents the annual equilibrium line altitude (ELA) for the glacier, where ablation equals accumulation. On Taku Glacier the ELA has been observed annually from 1946 to 2018. Since 1998 multiple annual observations of the TSL in satellite imagery identify both the migration rate of the TSL and ELA. The mean ELA has risen 85 ± 10 m from the 1946–1985 period to the 1986–2018 period. In 2018 the TSL was observed at: 900 m on 5 July; 975 m on 21 July; 1075 m on 30 July; 1400 m on 16 September; and 1425 m on 1 October. This is the first time since 1946 that the TSL has reached or exceeded 1250 m on Taku Glacier. The 500 m TSL rise from 5 July to 30 July, 8.0. md−1, is the fastest rate of rise observed. This combined with the observed balance gradient in this region yields an ablation rate of 40–43 mmd−1, nearly double the average ablation rate. On 22 July a snow pit was completed at 1405 m with 0.93 m w.e. (water equivalent), that subsequently lost all snow cover, prior to 16 September. This is one of eight snow pits completed in July providing field data to verify the ablation rate. The result of the record ELA and rapid ablation is the largest negative annual balance of Taku Glacier since records began in 1946.


1990 ◽  
Vol 112 (1) ◽  
pp. 114-120 ◽  
Author(s):  
H. Ounis ◽  
G. Ahmadi

The equation of motion of a small spherical rigid particle in a turbulent flow field, including the Stokes drag, the Basset force, and the virtual mass effects, is considered. For an isotropic field, the lift force and the velocity gradient effects are neglected. Using the spectral method, responses of the resulting constant coefficient stochastic integrao-differential equation are studied. Analytical expressions relating the Lagrangian energy spectra of particle velocity to that of the fluid are developed and the results are used to evaluate various response statistics. Variations of the mean-square particle velocity and particle diffusivity with size, density ratio and response time are studied. The theoretical predictions are compared with the digital simulation results and the available data and good agreement is observed.


Sign in / Sign up

Export Citation Format

Share Document