scholarly journals Swift heavy ions in dense plasmas: The interaction process as a probe of the plasma properties

2002 ◽  
Vol 20 (3) ◽  
pp. 467-470 ◽  
Author(s):  
GILLES MAYNARD

In this article, we analyze the sensitivity of the charge and energy distribution of a swift heavy ion beam interacting with a dense plasma on the thermodynamic and dynamic properties of the target. We study more particularly partially ionized carbon targets in which both the bound and the free electrons yield a significant contribution to the stopping. The emphasis is put on direct and indirect correlation between charge transfer and stopping. We show that nonlinearities, appearing in the interaction process for heavy ions, increase the dependency of the stopping on the plasma properties, indicating that diagnostics based on the analysis of the beam ions can provide valuable information on the target properties.

2012 ◽  
Vol 167 (7) ◽  
pp. 506-511 ◽  
Author(s):  
G. Devaraju ◽  
S. V.S. Nageswara Rao ◽  
N. Srinivasa Rao ◽  
V. Saikiran ◽  
T. K. Chan ◽  
...  

2020 ◽  
Vol 52 (11) ◽  
pp. 2585-2593 ◽  
Author(s):  
R. Rathika ◽  
M. Kovendhan ◽  
D. Paul Joseph ◽  
Rekha Pachaiappan ◽  
A. Sendil Kumar ◽  
...  

2002 ◽  
Vol 20 (4) ◽  
pp. 559-563 ◽  
Author(s):  
D. PENACHE ◽  
C. NIEMANN ◽  
A. TAUSCHWITZ ◽  
R. KNOBLOCH ◽  
S. NEFF ◽  
...  

The aim of the presented experiments is to study the transport of a heavy ion beam in a high-current plasma channel. The discharge is initiated in NH3 gas at pressures between 2 and 20 mbar by a line-tuned CO2 laser. A stable discharge over the entire electrode gap (0.5 m) was achieved for currents up to 60 kA. Concerning the ion beam transport, the magnetic field distribution inside the plasma channel has to be known. The ion-optical properties of the plasma channel have been investigated using different species of heavy ions (C, Ni, Au, U) with 11.4 MeV/u during six runs at the Gesellschaft für Schwerionenforschungs-UNILAC linear accelerator. The high magnetic field allowed the accomplishment of one complete betatron oscillation along the discharge channel. The results obtained up to now are very promising and suggest that, by scaling the discharge gap to longer distances, the beam transport over several meters is possible with negligible losses.


2017 ◽  
Vol 5 (47) ◽  
pp. 24826-24835 ◽  
Author(s):  
V. Sproll ◽  
M. Handl ◽  
R. Hiesgen ◽  
K. A. Friedrich ◽  
T. J. Schmidt ◽  
...  

Swift heavy ions create tracks of activated material in a polymer film for subsequent modification to form proton conducting channels.


2015 ◽  
Vol 15 (2) ◽  
pp. 129-134
Author(s):  
Reena Verma ◽  
Sanjiv Kumar ◽  
Chhagan Lal ◽  
I.P. Jain

2009 ◽  
Vol 59 (4) ◽  
pp. 351-355 ◽  
Author(s):  
T. Som ◽  
O. Sinha ◽  
J. Ghatak ◽  
B. Satpati ◽  
D. Kanjilal

1995 ◽  
Vol 396 ◽  
Author(s):  
A. Iwase ◽  
L. E. Rehn ◽  
P. M. Baldo ◽  
L. Funk

AbstractThe effects of cascade remnants on Freely Migrating Defects (FMD) were studied by measuring Radiation-Induced Segregation (RIS) in Cu-l%Au at 400°C during simultaneous irradiation with 1.5-MeV He and (400-800)-keV heavy ions (Ne, Ar or Cu). The large RIS observed during 1.5-MeV He-only irradiation was dramatically suppressed under simultaneous heavy ion irradiation. For Cu simultaneous irradiation, the suppression disappeared immediately after the Cu irradiation ceased, while for simultaneous inert gas (Ne or Ar) irradiation, the suppression persisted after the ion beam was turned off. These results demonstrate that the displacement cascades created by heavy ions introduce additional annihilation sites, which reduce the steady-state FMD concentrations. As the cascade remnants produced by Cu ions are thermally unstable at 400°C, the RIS suppression occurs only during simultaneous irradiation. On the other hand, the inert gas atoms which accumulate in the specimen apparently stabilize the cascade remnants, allowing the suppression to persist.


2002 ◽  
Vol 91 (3) ◽  
pp. 1129-1134 ◽  
Author(s):  
Saskia Kraft ◽  
Beate Schattat ◽  
Wolfgang Bolse ◽  
Siegfried Klaumünzer ◽  
Felix Harbsmeier ◽  
...  

2012 ◽  
Vol 585 ◽  
pp. 139-143 ◽  
Author(s):  
Sarla Sharma ◽  
Rishi Vyas ◽  
Y.K. Vijay

Swift heavy ion induced modification in the optical properties of TiO2/Poly (Methyl methacrylate) nanocomposites is reported in this paper. The as prepared anatase TiO2 nanoparticles were uniformly dispersed in PMMA matrix using solution casting method. These nanocomposites were then irradiated with Ag+12 (120 MeV) ion beam and characterized by X-ray diffraction, scanning electron microscopy, UV-Vis spectroscopy, PL and Raman spectroscopy. The PL spectra exhibited an enhanced broad emission peak in visible region (400 nm - 750 nm) while UV-Vis spectroscopy revealed an increased absorption in visible region in irradiated specimen in comparison to unirradiated sample.


1998 ◽  
Vol 540 ◽  
Author(s):  
S.J. Zinkle ◽  
Hj. Matzke ◽  
V.A. Skuratov

AbstractPlan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl2O4) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1×1016/m2 (single track regime) to 1×1020/m2. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of ∼35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1×1019/m2. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.


Sign in / Sign up

Export Citation Format

Share Document