scholarly journals Collimated proton beams from magnetized near-critical plasmas

2018 ◽  
Vol 36 (3) ◽  
pp. 276-285 ◽  
Author(s):  
Deep Kumar Kuri ◽  
Nilakshi Das ◽  
Kartik Patel

AbstractGeneration of collimated proton beams by linearly and circularly polarized (CP) lasers from magnetized near-critical plasmas has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. Due to cyclotron effects, the transverse proton momentum gets significantly reduced in the presence of an axial magnetic field which leads to an enhancement in collimation. Collimation is observed to be highest in case of a linearly polarized (LP) laser in the presence of magnetic field. However, protons accelerated by a right CP laser in the presence of magnetic field are not only highly collimated but are also more energetic than those accelerated by the LP laser. Although, the presence of an axial magnetic field enhances the collimation by reducing the transverse proton momentum, the maximum proton energy gets reduced since the transverse proton momentum has a significant contribution towards proton energy.

1988 ◽  
Vol 6 (3) ◽  
pp. 493-501 ◽  
Author(s):  
William Peter ◽  
Anthony L. Peratt

Three-dimensional plasma simulations of interacting galactic-dimensioned current filaments show bursts of synchroton radiation of energy density 1·2 ×10−13 erg/cm3 which can be compared with the measured cosmic microwave background energy density of 1·5 × 10−13 erg/cm3. However, the synchrotron emission observed in the simulations is not blackbody. In this paper, we analyze the absorption of the synchrotron emission by the current filaments themselves (i.e., self-absorption) in order to investigate the thermalization of the emitted radiation. It is found that a large number of current filaments (>1031) are needed to make the radiation spectrum blackbody up to the observed measured frequency of 100 GHz. The radiation spectrum and the required number of current filaments is a strong function of the axial magnetic field in the filaments.


2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2021 ◽  
Author(s):  
Leily Abidi

A three dimensional numerical simulation of the effect of an axial magnetic field on the fluid flow, heat and mass transfer within the solvent of GE0.98Si0.02 grown by the travelling solvent method is presented. The full steady state Navier-Stokes equations, as well as the energy, continuity and the mass transport equations, were solved numerically using the finite element technique. It is found that a strong convective flow exists in the solvent, which is known to be undesirable to achieve a uniform crystal. An external axial magnetic field is applied to suppress this convection. By increasing the magnetic induction, it is observed that the intensity of the flow at the centre of the crucible reduces at a faster rate than near the wall. This phenomenon creates a stable and flat growth interface and the silicon distribution in the horizontal plane becomes relatively homocentric. The maximum velocity is found to obey a power law with respect to the Hartmann number Umax Ha⁻⁷/⁴


2016 ◽  
Vol 35 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Ashish Vyas ◽  
Swati Sharma ◽  
Ram Kishor Singh ◽  
R.P. Sharma

AbstractThis paper presents a model to study the two prominent coexisting instabilities, stimulated Raman (SRS), and stimulated Brillouin scattering (SBS) in the presence of background axial magnetic field. In the context of laser-produced plasmas, this model is very useful in the situations where a self-generated axial magnetic field is present as well as where an external axial magnetic field is applied. Due to the interplay between both the scattering processes, the behavior of one scattering process is greatly modified in the presence of another coexisting scattering process. The impact of this coexisting phenomenon and axial magnetic field on the back reflectivity of scattered beams has been explored. It has been demonstrated that the back reflectivity gets modified significantly due to the coexistence of both the scattering processes (SRS and SBS) as well as due to the axial magnetic field. Results are also compared with the three-wave interaction case (isolated SRS or SBS case).


2001 ◽  
Vol 19 (1) ◽  
pp. 133-136 ◽  
Author(s):  
I. KOSTYUKOV ◽  
G. SHVETS ◽  
N.J. FISCH ◽  
J.M. RAX

Interaction between energetic electrons and a circularly polarized laser pulse in a relativistic plasma channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Javad Sodagar-Abardeh ◽  
Payam Nasery ◽  
Ahmad Arabkoohsar ◽  
Mahmood Farzaneh-Gord

Abstract The forced and natural flows of fluid within an annulus caused by the rotation of cylinders and temperature differences of the inner and outer walls are observed in various engineering applications. In this research, the laminar flow regime and mixed convection inside a ring-shaped horizontal concentric and eccentric space for an incompressible fluid are studied in the existence of an axial magnetic field. The present work is the first effort to investigate the influence of a magnetic field on flow and combined-convection heat exchange characteristics within an annulus with a cold outer cylinder and an inner hot cylinder. Here, the properties of the flow and heat transfer characteristics are studied using the finite volume method. Numerical procedures are mainly investigated for recognizing the influence of Hartmann number (in the range of 0 ≤ Ha ≤ 100), as the representative of the magnetic force, on velocity components, Nusselt number, streamlines, and isothermal lines. One of the notable effects is that when Ha number increases, it will reduce the vorticity of the fluid and buoyancy forces. As a result, streamlines and isothermal lines can be seen more constant as regular concentric circles. A rise in Ha number decreases the range of local Nu number variation for both cylinders. The average Nu number for the outer and inner cylinders has different trends when Ha number increases. Taking concentric cylinders as an example, this parameter for the inner and the outer cylinders increases and decreases by about 1.2 and 1.6, respectively.


Author(s):  
M.V Berry

The electric and magnetic polarization states for plane waves in arbitrary linear crystals, in which each of D and B is coupled to both of E and H , can be characterized by their typical singularities in direction space: degeneracies, where two refractive index eigenvalues coincide; C e and C m points, where the electric or magnetic field is circularly polarized; and L e and L m lines, where either field is linearly polarized. The well-known 4×4 matrix formalism, expressed in terms of the stereographic projection of directions, enables extensive numerical and visual exploration of the singularities in the general case (which involves 65 crystal parameters), incorporating bianisotropy, natural and Faraday optical activity, and absorption, as well as special cases where one or more effect is absent. For crystals whose anisotropy is weak but which are otherwise general, an unusual perturbation theory leads to a powerful 2×2 formalism capturing all the essential singularity phenomena, including the principal feature of the general case, namely the separation between the electric and magnetic singularities.


Sign in / Sign up

Export Citation Format

Share Document