Workspaces of a walking machine and their graphical representation. Part II: static workspaces

Robotica ◽  
1996 ◽  
Vol 14 (2) ◽  
pp. 219-226 ◽  
Author(s):  
S.J. Zhang ◽  
D. Howard ◽  
D.J. Sanger

SUMMARYPart I of this paper was concerned with kinematic workspaces of walking machines, while this paper addresses the static workspaces of a walking machine and their graphical representation. The results of static analysis are presented; the static workspace constraints are established; an algorithm for investigation of static workspaces is presented; and the position static workspaces are analysed and graphically represented for an example walking machine design.

Robotica ◽  
1996 ◽  
Vol 14 (1) ◽  
pp. 71-79 ◽  
Author(s):  
S. J. Zhang ◽  
D. J. Sanger ◽  
D. Howard

SummaryThis paper addresses the kinematic workspaces of a walking machine and their graphical representation. The workspaces for walking machines are denned and the methods for investigating various workspaces are presented; the kinematic workspace constraints are established; the displacement is analysed; an algorithm for investigation of kinematic workspaces is presented; and the position and orientation kinematic workspaces are analysed and graphically represented for an example walking machine design.


Author(s):  
Friedrich Pfeiffer

This paper presents some aspects of walking machine design with a special emphasis on the three machines MAX, MORITZ and JOHNNIE, having been developed at the Technical University of Munich within the last 20 years. The design of such machines is discussed as an iterative process improving the layout with every iteration. The control concepts are event-driven and follow logical rules, which have largely been transferred from neurobiological findings. At least for the six-legged machine MAX, a nearly perfect autonomy could be achieved, whereas for the biped JOHNNIE, a certain degree of autonomy could be realized by a vision system with appropriate decision algorithms. This vision system was developed by the group of Prof. G. Schmidt, TU-München. A more detailed description of the design and realization is presented for the biped JOHNNIE.


Author(s):  
E. F. Fichter ◽  
D. R. Kerr

Abstract A walking machine design originating from observations of insects is presented. The primary concept derived from insects is a leg used to apply force to the body without applying significant moments about the point of body attachment. This is accomplished with legs which have kinematic equivalents to ball-and-socket joints at body attachment and ground contact, with joints in the middle which only change distance between body and ground. Standing and walking with 6 legs of this design requires careful attention to static equilibrium equations but does not necessitate a control system which actively distributes forces to the legs. This paper considers necessary observational data, assumptions on which control is based, mathematical development for control and problems such as foot slip.


Author(s):  
Vadim V. Chernyshev ◽  
Vladimir V. Arykantsev ◽  
Andrey E. Gavrilov ◽  
Yaroslav V. Kalinin ◽  
Nikolay G. Sharonov

An important role among machines for sea bottom exploration is assigned to the autonomous ground devices. Some rescue tasks also require subsea robotic devices. The main purpose of the work is to investigate and improve adaptive characteristics, traction properties and control methods of cyclic walking movers in underwater conditions. Traction properties of walking machines, which moves at sea bottom was analyzed. Some experience of development and experimental tests of the walking robot “Vosminog”, designed for work at weak and waterlogged grounds. Dynamic model of a walking machine has been shown. Studied an opportunity to increase adaptive characteristics and shape passableness of walking machines. Also design and results of underwater tests of subsea walking unit MAK-1 are discussed. During tests the performance of a walking unit has been checked and the influence of design features of a walking mover on its traction characteristics and ground passability has been investigated. Some details about control system, power system and energy usage, vertical motions and accelerations for different types of walking and conditions of movement has been given. Also, certain attention was given to testing of methods of standalone movement control of subsea unit in conditions of incomplete and ambiguous vision of current situation. Tests have shown that walking movers in subsea conditions can provide higher traction properties, in comparison with wheeled and tracked ones. The unit can be used for exploration of seabed resources and for rescue tasks.


Author(s):  
S J Zhang ◽  
D J Sanger ◽  
D Howard

A parallel mechanism is one whose links and joints form two or more serially connected chains which join the fixed base and the end effector The mechanism of a multi-legged walking machine can be considered as a parallel mechanism whose base is not fixed and whose configuration changes during different phases of its gait. This paper presents methods for analysing the mechanics of parallel mechanisms and walking machines using vector and screw algebra Firstly, displacement analysis is covered; this includes general methods for deriving the position vector of any joint in any leg and for calculating the active joint displacements in any leg. Secondly, velocity analysis is covered which tackles the problem of calculating active joint velocities given the velocity, position and the orientation of the body and the positions of the feet. Thirdly, the static analysis of these classes of mechanisms using the principle of virtual work and screw algebra is given. Expressions are derived for the actuator forces and torques required to balance a given end effector (or body) wrench and, in the case of a walking machine, the ground reactions at the feet. Numerical examples are given to demonstrate the application of these methods.


Robotica ◽  
2000 ◽  
Vol 18 (6) ◽  
pp. 639-649 ◽  
Author(s):  
S. Miao ◽  
D. Howard

This paper describes an algorithm for generating a tripod turning gait which, when given an arbitrarily located turning centre, firstly maximises the rotation angle (angular stride) and then secondly optimises the stability. It does not require a specific walking machine layout or leg workspace shape, and it can deal with changes in the position of the CG caused by walking on a gradient or by uneven loading.


1992 ◽  
Vol 114 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Shin-Min Song ◽  
Xiaochun Gao

The mobility equation has been applied to predict the indeterminacy of unknown joint forces/torques in static analysis. In this paper, the mobility equation is modified to investigate the solvability of joint forces/torques of spatial mechanisms in dynamic analysis. Each factor which may contribute to indeterminacy is discussed and is explicitly expressed in the equation. With the modifications, the mobility equation can be applied to a system with or without redundant actuators. Together with the concept of subspaces and a few simple rules, the mobility equation can be used to identify the solvability of every joint unknown, as well as the equations which are required for the solutions, under the assumption of rigid bodies. This method can be used as a guidance of dynamic analysis in dealing with complicated systems such as walking machines and multi-fingered grippers.


1993 ◽  
Vol 5 (6) ◽  
pp. 511-515
Author(s):  
Katsuhiko Inagaki ◽  
◽  
Hisato Kobayashi

This paper discusses a new mechanism and a new method of motion control for a multi-legged walking machine. The new mechanism provides high energy efficiency which is one of the most important points of walking machines. This problem is solved combining a gasoline engine and an electromagnetic clutch system. In addition, synchronized motion control is also proposed for this mechanism. This control is based on the notion of an autonomous distributed control. Thus, this system has sufficient flexibility and reliability.


2015 ◽  
Vol 764-765 ◽  
pp. 213-217
Author(s):  
Fu Chen Chen ◽  
Shang Chen Wu ◽  
Yung Cheng Chen

The purpose of this study is to investigate the effect of crank arrangement on the dynamics of a quadruped walking machine. The dynamic characteristics of the walking machine, including the stance leg sequence, pitch angle and dynamic response of the quadruped walking machine are investigated and compared with the existing design. The results show that the phrase angle between front and rear legs on the same side should be 0o or 90o and the one between the legs on the different sides should be 180o. The results of this study can serve as a reference for future design and optimization of quadruped walking machines.


Author(s):  
Keisuke Arikawa ◽  
Shigeo Hirose

The performance of existing actuators, such as electric motors, is very limited, be it power–weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.


Sign in / Sign up

Export Citation Format

Share Document