Kinematic modeling and control for human-robot cooperation considering different interaction roles

Robotica ◽  
2014 ◽  
Vol 33 (2) ◽  
pp. 314-331 ◽  
Author(s):  
B. V. Adorno ◽  
A. P. L. Bó ◽  
P. Fraisse

SUMMARYThis paper presents a novel approach for the description of physical human-robot interaction (pHRI) tasks that involve two-arm coordination, and where tasks are described by the relative pose between the human hand and the robot hand. We develop a unified kinematic model that takes into account the human-robot system from a holistic point of view, and we also propose a kinematic control strategy for pHRI that comprises different levels of shared autonomy. Since the kinematic model takes into account the complete human-robot interaction system and the kinematic control law is closed loop at the interaction level, the kinematic constraints of the task are enforced during its execution. Experiments are performed in order to validate the proposed approach, including a particular case where the robot controls the human arm by means of functional electrical stimulation (FES), which may potentially provide useful solutions for the interaction between assistant robots and impaired individuals (e.g., quadriplegics and hemiplegics).

2014 ◽  
Vol 4 (4) ◽  
pp. 267-285 ◽  
Author(s):  
Wenbing Zhao ◽  
Roanna Lun ◽  
Deborah D. Espy ◽  
M. Ann Reinthal

Abstract This article describes a novel approach to realtime motion assessment for rehabilitation exercises based on the integration of comprehensive kinematic modeling with fuzzy inference. To facilitate the assessment of all important aspects of a rehabilitation exercise, a kinematic model is developed to capture the essential requirements for static poses, dynamic movements, as well as the invariance that must be observed during an exercise. The kinematic model is expressed in terms of a set of kinematic rules. During the actual execution of a rehabilitation exercise, the similarity between the measured motion data and the model is computed in terms of their distances, which are then used as inputs to a fuzzy interference system to derive the overall quality of the execution. The integrated approach provides both a detailed categorical assessment of the overall execution of the exercise and the degree of adherence to individual kinematic rules.


2018 ◽  
Vol 23 (6) ◽  
pp. 2662-2670
Author(s):  
Kyeong Ha Lee ◽  
Seung Guk Baek ◽  
Hyuk Jin Lee ◽  
Hyouk Ryeol Choi ◽  
Hyungpil Moon ◽  
...  

Author(s):  
Adhau P ◽  
◽  
Kadwane S. G ◽  
Shital Telrandhe ◽  
Rajguru V. S ◽  
...  

Human robot interaction have been ever the topic of research to research scholars owing to its importance to help humanity. Robust human interacting robot where commands from Electromyogram (EMG) signals is recently being investigated. This article involves study of motions a system that allows signals recorded directly from a human body and thereafter can be used for control of a small robotic arm. The various gestures are recognized by placing the electrodes or sensors on the human hand. These gestures are then identified by using neural network. The neural network will thus train the signals. The offline control of the arm is done by controlling the motors of the robotic arm.


Author(s):  
Zita V. Farkas ◽  
Gergely Nádas ◽  
 József Kolossa ◽  
Péter Korondi

Service robot technology is progressing at a fast pace. Accurate robot-friendly indoor localization and harmonization of built environ-ment in alignment with digital, physical, and social environment becomes emphasized. This paper proposes the novel approach of Robot Compatible Environment (RCE) within the architectural space. Evolution of service robotics in connection with civil engineering and architecture is discussed, whereas optimum performance is to be achieved based on robots’ capabilities and spatial affordances. For ubiquitous and safe human-robot interaction, robots are to be integrated into the living environment. The aim of the research is to highlight solutions for various interconnected challenges within the built environment. Our goal is to reach findings on comparison of robotic and accessibility standards, synthesis of navigation, access to information and social acceptance. Checklists, recommendations, and design process are introduced within the RCE framework, proposing a holistic approach.


Author(s):  
Vikram Ramanathan ◽  
Andy Zelenak ◽  
Mitch Pryor

Abstract This article presents a novel kinematic model and controller design for a mobile robot with four Centered Orientable Conventional (COC) wheels. When compared to non-conventional wheels, COC wheels perform better over rough terrain, are not subject to vertical chatter and offer better braking capability. However, COC wheels are pseudo-omnidirectional and subject to nonholonomic constraints. Several established modeling and control techniques define and control the Instantaneous Center of Rotation (ICR); however, this method involves singular configurations that are not trivial to eliminate. The proposed method uses a novel ICR-based kinematic model to avoid these singularities, and an ICR-based nonlinear controller for one ‘master’ wheel. The other ‘slave’ wheels simply track the resulting kinematic relationships between the ‘master’ wheel and the ICR. Thus, the nonlinear control problem is reduced from 12th to 3rd-order, becoming much more tractable. Simulations with a feedback linearization controller verify the approach.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4461 ◽  
Author(s):  
Weihai Chen ◽  
Zhongyi Li ◽  
Xiang Cui ◽  
Jianbin Zhang ◽  
Shaoping Bai

Compared with conventional exoskeletons with rigid links, cable-driven upper-limb exoskeletons are light weight and have simple structures. However, cable-driven exoskeletons rely heavily on the human skeletal system for support. Kinematic modeling and control thus becomes very challenging due to inaccurate anthropomorphic parameters and flexible attachments. In this paper, the mechanical design of a cable-driven arm rehabilitation exoskeleton is proposed to accommodate human limbs of different sizes and shapes. A novel arm cuff able to adapt to the contours of human upper limbs is designed. This has given rise to an exoskeleton which reduces the uncertainties caused by instabilities between the exoskeleton and the human arm. A kinematic model of the exoskeleton is further developed by considering the inaccuracies of human-arm skeleton kinematics and attachment errors of the exoskeleton. A parameter identification method is used to improve the accuracy of the kinematic model. The developed kinematic model is finally tested with a primary experiment with an exoskeleton prototype.


2016 ◽  
Vol 50 (4) ◽  
pp. 54-66 ◽  
Author(s):  
Nikola Mišković ◽  
Marco Bibuli ◽  
Andreas Birk ◽  
Massimo Caccia ◽  
Murat Egi ◽  
...  

AbstractDivers operate in harsh and poorly monitored environments, in which the slightest unexpected disturbance, technical malfunction, or lack of attention can have catastrophic consequences. Motivated by these considerations, the “CADDY—Cognitive Autonomous Diving Buddy” FP7 project sets forth the main goal of developing a cooperative autonomous underwater robotic system to monitor and assist human divers, thus affording them increased levels of safety during the execution of challenging scientific and commercial missions. This article presents the main results obtained in the first 2 years of the project along the following main research topics: Seeing the Diver, where the focus is placed on the 3D reconstruction of a diver's model (pose estimation and recognition of hand gestures) through remote and local sensing technologies, thus enabling behavior interpretation; Understanding the Diver, with the objective of interpreting the model and physiological measurements of the diver in order to determine the state of the diver; and Diver-Robot Cooperation and Control, aimed at investigating the interaction of the diver with underwater vehicles endowed with rich sensory motor skills, focusing on cooperative control and optimal formation with the diver as an integral part of the overall vehicle-diver formation.


Author(s):  
Feifei Bian ◽  
Danmei Ren ◽  
Ruifeng Li ◽  
Peidong Liang

Purpose The purpose of this paper is to eliminate instability which may occur when a human stiffens his arms in physical human–robot interaction by estimating the human hand stiffness and presenting a modified vibration index. Design/methodology/approach Human hand stiffness is first estimated in real time as a prior indicator of instability by capturing the arm configuration and modeling the level of muscle co-contraction in the human’s arms. A time-domain vibration index based on the interaction force is then modified to reduce the delay in instability detection. The instability is confirmed when the vibration index exceeds a given threshold. The virtual damping coefficient in admittance controller is adjusted accordingly to ensure stability in physical human–robot interaction. Findings By estimating the human hand stiffness and modifying the vibration index, the instability which may occur in stiff environment in physical human–robot interaction is detected and eliminated, and the time delay is reduced. The experimental results demonstrate significant improvement in stabilizing the system when the human operator stiffens his arms. Originality/value The originality is in estimating the human hand stiffness online as a prior indicator of instability by capturing the arm configuration and modeling the level of muscle co-contraction in the human’s arms. A modification of the vibration index is also an originality to reduce the time delay of instability detection.


Author(s):  
Farshid Amirabdollahian ◽  
Rieks op den Akker ◽  
Sandra Bedaf ◽  
Richard Bormann ◽  
Heather Draper ◽  
...  

AbstractA new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developments.


Sign in / Sign up

Export Citation Format

Share Document