scholarly journals Realtime Motion Assessment For Rehabilitation Exercises: Integration Of Kinematic Modeling With Fuzzy Inference

2014 ◽  
Vol 4 (4) ◽  
pp. 267-285 ◽  
Author(s):  
Wenbing Zhao ◽  
Roanna Lun ◽  
Deborah D. Espy ◽  
M. Ann Reinthal

Abstract This article describes a novel approach to realtime motion assessment for rehabilitation exercises based on the integration of comprehensive kinematic modeling with fuzzy inference. To facilitate the assessment of all important aspects of a rehabilitation exercise, a kinematic model is developed to capture the essential requirements for static poses, dynamic movements, as well as the invariance that must be observed during an exercise. The kinematic model is expressed in terms of a set of kinematic rules. During the actual execution of a rehabilitation exercise, the similarity between the measured motion data and the model is computed in terms of their distances, which are then used as inputs to a fuzzy interference system to derive the overall quality of the execution. The integrated approach provides both a detailed categorical assessment of the overall execution of the exercise and the degree of adherence to individual kinematic rules.

1980 ◽  
Vol 102 (4) ◽  
pp. 311-317 ◽  
Author(s):  
H. J. Sommer ◽  
N. R. Miller

This paper describes a general technique for fitting a spatial kinematic model to an in-vivo anatomical joint under typical physiological loading conditions. The method employs a nonlinear least squares algorithm to minimize the aggregate deviation between postulated model motion and experimentally measured anatomical joint motion over multiple joint positions. Estimation of the parameters of a universal joint with skew-oblique revolutes to best reproduce wrist motion was used as an example. Experimental motion data from the right wrists of five subjects were analyzed. The technique performed very well and produced repeatable results consistent with previous biomechanical wrist findings.


Robotica ◽  
2014 ◽  
Vol 33 (2) ◽  
pp. 314-331 ◽  
Author(s):  
B. V. Adorno ◽  
A. P. L. Bó ◽  
P. Fraisse

SUMMARYThis paper presents a novel approach for the description of physical human-robot interaction (pHRI) tasks that involve two-arm coordination, and where tasks are described by the relative pose between the human hand and the robot hand. We develop a unified kinematic model that takes into account the human-robot system from a holistic point of view, and we also propose a kinematic control strategy for pHRI that comprises different levels of shared autonomy. Since the kinematic model takes into account the complete human-robot interaction system and the kinematic control law is closed loop at the interaction level, the kinematic constraints of the task are enforced during its execution. Experiments are performed in order to validate the proposed approach, including a particular case where the robot controls the human arm by means of functional electrical stimulation (FES), which may potentially provide useful solutions for the interaction between assistant robots and impaired individuals (e.g., quadriplegics and hemiplegics).


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhengxiong Lu ◽  
Wei Guo ◽  
Shuanfeng Zhao ◽  
Chuanwei Zhang ◽  
Yuan Wang ◽  
...  

A fully mechanized coalface is a rugged environment that has poor visibility. The traditional video monitoring system has problems such as a lack of realism, a blurry monitoring effect, and poor reliability. It is an important task to monitor the operations of the three-machine equipment (we will refer to the shearer, hydraulic support, and scraper conveyor as the three-machine equipment) intuitively, accurately, and timely and ensure that it is operating safely. This study proposed a cross-platform Web3D monitoring system for the three-machine equipment. First, the virtual mesh model and skeleton model that was embedded in the mesh model were established according to three-machine ontology and basic motion units. Second, the kinematic model of the three-machine skeleton was established via the inverse kinematic modeling of the hydraulic support and the coordinate calculation of the vertices on the three-machine skeleton. Third, the motion data, which were captured by sensors, were applied to drive the movement of the three-machine skeleton and mesh model. Finally, WebGL, which is the latest Internet graphics standard, was used to render the three-machine models, and the performance of this monitoring system is tested on different equipment in the laboratory. The results of the test show that the three-machine cross-platform monitoring system has splendid performance, and it realizes cross-platform 3D monitoring effectively in the laboratory. In the future, this system will be used as a supervisory tool and be integrated with the traditional monitoring system to monitor the three-machine equipment with the field staff.


Author(s):  
Supriya Raheja

Background: The extension of CPU schedulers with fuzzy has been ascertained better because of its unique capability of handling imprecise information. Though, other generalized forms of fuzzy can be used which can further extend the performance of the scheduler. Objectives: This paper introduces a novel approach to design an intuitionistic fuzzy inference system for CPU scheduler. Methods: The proposed inference system is implemented with a priority scheduler. The proposed scheduler has the ability to dynamically handle the impreciseness of both priority and estimated execution time. It also makes the system adaptive based on the continuous feedback. The proposed scheduler is also capable enough to schedule the tasks according to dynamically generated priority. To demonstrate the performance of proposed scheduler, a simulation environment has been implemented and the performance of proposed scheduler is compared with the other three baseline schedulers (conventional priority scheduler, fuzzy based priority scheduler and vague based priority scheduler). Results: Proposed scheduler is also compared with the shortest job first CPU scheduler as it is known to be an optimized solution for the schedulers. Conclusion: Simulation results prove the effectiveness and efficiency of intuitionistic fuzzy based priority scheduler. Moreover, it provides optimised results as its results are comparable to the results of shortest job first.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debo Qi ◽  
Chengchun Zhang ◽  
Jingwei He ◽  
Yongli Yue ◽  
Jing Wang ◽  
...  

AbstractThe fast swimming speed, flexible cornering, and high propulsion efficiency of diving beetles are primarily achieved by their two powerful hind legs. Unlike other aquatic organisms, such as turtle, jellyfish, fish and frog et al., the diving beetle could complete retreating motion without turning around, and the turning radius is small for this kind of propulsion mode. However, most bionic vehicles have not contained these advantages, the study about this propulsion method is useful for the design of bionic robots. In this paper, the swimming videos of the diving beetle, including forwarding, turning and retreating, were captured by two synchronized high-speed cameras, and were analyzed via SIMI Motion. The analysis results revealed that the swimming speed initially increased quickly to a maximum at 60% of the power stroke, and then decreased. During the power stroke, the diving beetle stretched its tibias and tarsi, the bristles on both sides of which were shaped like paddles, to maximize the cross-sectional areas against the water to achieve the maximum thrust. During the recovery stroke, the diving beetle rotated its tarsi and folded the bristles to minimize the cross-sectional areas to reduce the drag force. For one turning motion (turn right about 90 degrees), it takes only one motion cycle for the diving beetle to complete it. During the retreating motion, the average acceleration was close to 9.8 m/s2 in the first 25 ms. Finally, based on the diving beetle's hind-leg movement pattern, a kinematic model was constructed, and according to this model and the motion data of the joint angles, the motion trajectories of the hind legs were obtained by using MATLAB. Since the advantages of this propulsion method, it may become a new bionic propulsion method, and the motion data and kinematic model of the hind legs will be helpful in the design of bionic underwater unmanned vehicles.


2021 ◽  
pp. 1-16
Author(s):  
Tran Thi Tham ◽  
Linh Thi Truc Doan ◽  
Yousef Amer ◽  
Sang Heon Lee

Operation strategy plays an important role in business improvement and calls for many research attention in recent years. This study aims to propose an integrated approach to determine the most appropriate operational strategies in their companies under multi-conflicting objectives with a limited budget. The novel approach is developed by using the combination of Fuzzy Technique for Order Preference by Similarity to Ideal Situation (Fuzzy TOPSIS), Sensitivity Analysis (SA) and Multi-Objective Linear Programming (MOLP) model. The operation strategies are evaluated through five objectives such as Productivity, Quality, Cost, Time and Importance score. The importance scores of all strategies are firstly obtained from the Fuzzy TOPSIS method. The sets of the weight of criteria are then established by using SA while MOLP approach is used to select appropriate strategies under multi-conflicting objectives with limited resources. A case study with 110 possible scenarios of operational strategies from An Giang Fisheries Import Export Joint Stock Company in Vietnam is considered to illustrate the practicability of the proposed approach. The results found that the proposed approach is suitable to make a decision on operation strategy.


Author(s):  
S. Vasuhi ◽  
A. Samydurai ◽  
Vijayakumar M.

In this paper, a novel approach is proposed to track humans for video surveillance using multiple cameras and video stitching techniques. SIFT key points are extracted from all camera inputs. Using k-d tree algorithm, all the key points are matched and random sample consensus (RANSAC) is used to identify the match correspondence among all the matched points. Homography matrix is calculated using four matched robust feature correspondences, the images are warped with respect to the other images, and the human tracking is performed on the stitched image. To identify the human in the stitched video, background modeling is performed using fuzzy inference system and perform foreground extraction. After foreground extraction, the blobs are constructed around each detected human and centroid point is calculated for each blob. Finally, tracking of multiple humans is done by Kalman filter (KF) with Hungarian algorithm.


2019 ◽  
Vol 32 (1) ◽  
pp. 60-74 ◽  
Author(s):  
Sophia Xiaoxia Duan ◽  
Hepu Deng ◽  
Feng Luo

Purpose Effectively evaluating the efficiency of individual e-markets for better understanding the efficiency-oriented critical drivers for individual e-markets is of great significance to the development of electronic business. The purpose of this paper is to develop an approach through adequately integrating data envelopment analysis (DEA) and bootstrapped Tobit regression analysis for identifying the efficiency-oriented critical drivers on the development of e-market in electronic business. Design/methodology/approach A review of the related literature is conducted for adequately formulating the e-market evaluation problem. DEA is appropriately used for assessing the efficiency of available e-markets, leading to the identification of the efficient e-market. Tobit regression analysis is then employed to examine the outcome of the DEA analysis for identifying the efficiency-oriented critical drivers in the development of e-markets in electronic business. Findings A better understanding of the operations of individual e-markets with respect to their overall efficiency in electronic business can be achieved with the use of the developed approach. Such understanding is built on the identification of the efficiency-oriented critical drivers on the development of e-market in electronic business. Originality/value This paper develops a novel approach for better understanding of the operations of individual e-markets with respect to their overall efficiency in electronic business. The adoption of this approach helps existing e-markets improve their efficiency by focussing on the efficiency-oriented critical drivers and provide new players in e-markets with guidelines for developing their efficient e-markets.


Sign in / Sign up

Export Citation Format

Share Document