Study on hexapod robot manipulation using legs

Robotica ◽  
2014 ◽  
Vol 34 (2) ◽  
pp. 468-481 ◽  
Author(s):  
Xilun Ding ◽  
Fan Yang

SUMMARYIn order to provide a novel approach for the operational problems of walking robots, this paper presents a method by which a hexapod robot uses its legs to manipulate an object, and this involves the following two steps. First, two adjacent legs are used to manipulate the object. Next, the supporting legs are required to assist the arms to obtain high manipulability. The manipulation constraints, workplaces, and kinematic models are analyzed using screw theories. Moreover, an optimization algorithm is proposed to reduce energy consumption under stability constraints. We also introduce a manipulation control model that simultaneously considers the supporting and operating legs. Finally, the validity of these methods is proved by the results of experiments and simulations.

2021 ◽  
Author(s):  
Negin Babaei ◽  
Alireza Hedayati

Abstract Internet of things is one of the most important technologies in the last century which covers various domains such as wireless sensor networks. Wireless sensor networks consist of a large number of sensor nodes that are scattered in an environment and collect information from the surrounding environment and send it to a central station. One of the most important problems in these networks is saving energy consumption of nodes and consequently increasing lifetime of networks. Work has been done in various fields to achieve this goal, one of which is clustering and the use of sleep timing mechanisms in wireless sensor networks. Therefore, in this article, we have examined the existing protocols in this field, especially LEACH-based clustering protocols. The proposed method tries to optimize the energy consumption of nodes by using genetic-based clustering as well as a sleep scheduling mechanism based on the colonial competition algorithm. The results of this simulation show that our proposed method has improved network life (by 18%) and average energy consumption (by 11%) and reduced latency in these networks (by 17%).


2011 ◽  
Vol 201-203 ◽  
pp. 1112-1115
Author(s):  
Hao Ping Li ◽  
Zi Fan Fang ◽  
Ying Wang

Based on analysis of the cargo selecting strategy of fixed shelf automated warehouse, the idea of path optimization is put forward and the stacker path optimization method is studied. A mathematical model of stacker operation path optimization is built to minimize the length of operation path and the operation time. The model is solved by using the ant colony optimization method. Simulation shows that chosen stacker operation path by using the optimization model and optimization algorithm, can not only reduce energy consumption and warehouse operating costs, but also improve the efficiency of goods storage.


2014 ◽  
Vol 986-987 ◽  
pp. 1236-1239
Author(s):  
Yun Long Zhang

In energy-saving control process of large-scale-scale intelligent electromechanical device, it is need to consume non-essential energy. To reduce energy consumption, energy-saving design method is proposed based on adaptive linear genetic algorithms. According to theory of adaptive particle swarm optimization, optimal particle is searched in the global domain, which provides basis for energy-saving control of large-scale-scale intelligent electromechanical device. According to adaptive linear genetic theory, energy-saving control model of large-scale intelligent electromechanical device is built to complete energy-saving control. Experimental results show that algorithm can effectively reduce energy consumption and obtain satisfactory results.


2021 ◽  
Vol 11 (3) ◽  
pp. 1339
Author(s):  
Mindaugas Luneckas ◽  
Tomas Luneckas ◽  
Jonas Kriaučiūnas ◽  
Dainius Udris ◽  
Darius Plonis ◽  
...  

Due to the prospect of using walking robots in an impassable environment for tracked or wheeled vehicles, walking locomotion is one of the most remarkable accomplishments in robotic history. Walking robots, however, are still being deeply researched and created. Locomotion over irregular terrain and energy consumption are among the major problems. Walking robots require many actuators to cross different terrains, leading to substantial consumption of energy. A robot must be carefully designed to solve this problem, and movement parameters must be correctly chosen. We present a minimization of the hexapod robot’s energy consumption in this paper. Secondly, we investigate the reliance on power consumption in robot movement speed and gaits along with the Cost of Transport (CoT). To perform optimization of the hexapod robot energy consumption, we propose two algorithms. The heuristic algorithm performs gait switching based on the current speed of the robot to ensure minimum energy consumption. The Red Fox Optimization (RFO) algorithm performs a nature-inspired search of robot gait variable space to minimize CoT as a target function. The algorithms are tested to assess the efficiency of the hexapod robot walking through real-life experiments. We show that it is possible to save approximately 7.7–21% by choosing proper gaits at certain speeds. Finally, we demonstrate that our hexapod robot is one of the most energy-efficient hexapods by comparing the CoT values of various walking robots.


2020 ◽  
Vol 26 (3) ◽  
pp. 20-25
Author(s):  
Laurențiu Bogdan Asalomia ◽  
Gheorghe Samoilescu

AbstractThe paper analyses the role of control and monitoring of electro-energetic equipment in order to reduce operational costs, increase profits and reduce carbon emissions. The role of SCADA and EcoStruxure Power systems is presented and analysed taking into account the energy consumption and its savings. The paper presents practical and modern solutions to reduce energy consumption by up to 53%, mass by up to 47% and increase the life of the equipment by adjusting the electrical parameters. The Integrated Navigation System has allowed an automatic control and an efficient management. For ships, the implementation of an energy efficiency design index and new technologies was required for the GREEN SHIP project.


2015 ◽  
Vol 8 (1) ◽  
pp. 206-210 ◽  
Author(s):  
Yu Junyang ◽  
Hu Zhigang ◽  
Han Yuanyuan

Current consumption of cloud computing has attracted more and more attention of scholars. The research on Hadoop as a cloud platform and its energy consumption has also received considerable attention from scholars. This paper presents a method to measure the energy consumption of jobs that run on Hadoop, and this method is used to measure the effectiveness of the implementation of periodic tasks on the platform of Hadoop. Combining with the current mainstream of energy estimate formula to conduct further analysis, this paper has reached a conclusion as how to reduce energy consumption of Hadoop by adjusting the split size or using appropriate size of workers (servers). Finally, experiments show the effectiveness of these methods as being energy-saving strategies and verify the feasibility of the methods for the measurement of periodic tasks at the same time.


Author(s):  
Premkumar Chithaluru ◽  
Rajeev Tiwari ◽  
Kamal Kumar

Background: Energy Efficient wireless routing has been an area of research particularly to mitigate challenges surrounding performance in category of Wireless Networks. Objectives: The Opportunistic Routing (OR) technique was explored in recent times and exhibits benefits over many existing protocols and can significantly reduce energy consumption during data communication with very limited compromise on performance. Methods : Using broadcasting nature of the wireless medium, OR practices to discourse two foremost issues of variable link quality and unpredictable node agility in constrained WSNs. OR has a potential to reduce delay in order to increase the consistency of data delivery in network. Results : Various OR based routing protocols have shown varying performances. In this paper, a detailed conceptual and experimental analysis is carried out on different protocols that uses OR technique for providing more clear and definitive view on performance parameters like Message Success Rate, Packet Delivery Ratio and Energy Consumption.


Sign in / Sign up

Export Citation Format

Share Document