The effects of joint clearance on the dynamics of the 3RRR planar parallel manipulator

Robotica ◽  
2016 ◽  
Vol 35 (6) ◽  
pp. 1223-1242 ◽  
Author(s):  
S. M. Varedi-Koulaei ◽  
H. M. Daniali ◽  
M. Farajtabar

SUMMARYIn reality, clearances in the joints are inevitable due to tolerances, and defects arising from design and manufacturing. Therefore, poor dynamic performance, reduction in components component lifetimes and generation of undesirable vibrations result in impacts of mating parts in the clearance joint. In this study, the dynamic behavior of a planar mechanism with revolute joints, in the presence of clearances is investigated. A continuous contact force model, based on elastic Hertz theory together with a dissipative term, is used to evaluate the contact forces here. Moreover, using a contact model, the effects of working speed and clearance size on the dynamic characteristics of a planar mechanical system are analyzed and compared. Furthermore, numerical results for a 3RRR planar parallel manipulator with six revolute clearance joints are presented.

Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

The main goal of this work is to develop a methodology for studying and quantifying the wear phenomenon in revolute clearance joints. In the process, a simple model for a revolute joint in the framework of multibody systems formulation is presented. The evaluation of the contact forces developed is based on a continuous contact force model that accounts for the geometrical and materials properties of the colliding bodies. The friction effects due to the contact in the joints are also represented. Then, these contact-impact forces are used to compute the pressure field at the contact zone, which ultimately is employed to quantify the wear developed and caused by the relative sliding motion. In this work, the Archard’s wear model is used. A simple planar multibody mechanical system is used to perform numerical simulations, in order to discuss the assumptions and procedures adopted throughout this work. Different results are presented and discussed throughout this research work. From the main results obtained, it can be drawn that the wear phenomenon is not uniformly distributed around the joint surface, owing to the fact that the contact between the joint elements is wider and more frequent is some specific regions.


Author(s):  
Paulo Flores ◽  
Hamid M. Lankarani

A general methodology for the dynamic modeling and analysis of planar multibody systems with multiple clearance joints is presented. The inter-connecting body components that constitute a real joint are modeled as colliding bodies, which dynamic behaviors are influenced by geometric, physical and mechanical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory, together with a dissipative term, is used to evaluate the intra-joint contact forces. The incorporation of the friction, based on the classical Coulomb’s friction law, is also included. The suitable contact force models are embedded into the dynamic equations of motion for the multibody system. A simple mechanical system with multiple clearance joints is used to demonstrate the accuracy and efficiency of the presented approach and to discuss the main assumptions and procedures adopted. The effects of single versus multiple clearance joints are discussed.


Author(s):  
Paulo Flores ◽  
Hamid M. Lankarani

A general methodology for the dynamic modeling and analysis of planar multibody systems with multiple clearance joints is presented. The inter-connecting bodies that constitute a real physical mechanical joint are modeled as colliding components, whose dynamic behavior is influenced by the geometric, physical and mechanical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory, together with a dissipative term associated with the internal damping, is utilized to evaluate the intra-joint normal contact forces. The incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also included in this study. The suitable contact force models are embedded into the dynamic equations of motion for the multibody systems. In the sequel of this process, the fundamental methods to deal with contact-impact events in mechanical systems are presented. Finally, two planar mechanisms with multiple revolute clearance joints are used to demonstrate the accuracy and efficiency of the presented approach and to discuss the main assumptions and procedures adopted. The effects of single versus multiple clearance revolute joints are discussed.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Gengxiang Wang ◽  
Hongzhao Liu

Effects of wear and member flexibility on the dynamic performance of a planar five-bar mechanism with joint-clearance are investigated. The equation of motion of the mechanism is derived based on the absolute nodal coordinate formulation (ANCF). In order to enhance the accuracy of the contact force, the slope of the load–displacement curve of the cylindrical joint with clearance is used. The contact deformation couples the joint wear to the contact state. The contact force model of Flores and coworkers is improved, by the introduction of the stiffness coefficient. The wear depth is predicted by using the Archard's wear model. Simulations show that the multiclearance joints can generate stronger contact forces relative to single clearance joint case. This leads to more severe wear in the joint. However, the mechanism with multiple flexible links can absorb more of the energy arising from the clearance joint, and this improves the wear phenomenon.


2014 ◽  
Vol 10 (1) ◽  
pp. 59-74
Author(s):  
Zheng Feng Bai ◽  
Yang Zhao ◽  
Jun Chen

Purpose – The existence of clearance in joints of positioning mechanism is inevitable and the movements of the real mechanism are deflected from the ideal mechanism due to the clearances. The purpose of this paper is to investigate the effects of clearance on the dynamic characteristics of dual-axis positioning mechanism of a satellite antenna. Design/methodology/approach – The dynamics analysis of dual-axis positioning mechanism with clearance are investigated using a computational approach based on virtual prototyping technology. The contact model in joint clearance is established by using a hybrid nonlinear continuous contact force model and the friction effect is considered by using a modified Coulomb friction model. Then the numerical simulation of dual-axis positioning mechanism with joint clearance is carried out and four case studies are implemented for different clearance sizes. Findings – Clearance leads to degradation of the dynamic performance of the system. The existence of clearance causes impact dynamic loads, and influences the motion accuracy and stability of the dual-axis positioning mechanism. Larger clearance induces higher frequency shakes and larger shake amplitudes, which will deteriorate positioning accuracy. Practical implications – Providing an effective and practical method to analyze dynamic characteristics of dual-axis positioning mechanism of satellite antenna with joint clearance and describing the dynamic characteristics of the dual-axis positioning system more realistically, which improves the engineering application. Originality/value – The paper is the basis of mechanism design, precision analysis and robust control system design of dual-axis positioning mechanism of satellite antenna.


2007 ◽  
Vol 2 (4) ◽  
pp. 344-350 ◽  
Author(s):  
Jun Wu ◽  
Jinsong Wang ◽  
Liping Wang ◽  
Tiemin Li ◽  
Yue Liu

This paper focuses on the dynamic modeling and counterweight optimization of the two degree of freedom planar parallel manipulator, which is a subpart of a hybrid machine tool. Based on a kinematic analysis, the dynamic equation is derived by using the Newton-Euler approach. Then, three counterweight modes are presented for the parallel manipulator. According to the cutting force model and motion planning of the cutting tool, the dynamic simulations with three counterweight modes are performed, and the mass of counterweight in each counterweight mode is optimized by minimizing the sum of mean square values of actuator forces. The simulations show that the optimal mass of counterweights does not equal the total mass of moving parts of the parallel manipulator, and each counterweight mode has its advantage and disadvantage. Considering the ease in which a counterweight can be implemented, the counterweight mode where two counterweights are connected to two sliders is adopted for the parallel manipulator.


Author(s):  
Filipe Marques ◽  
Fernando Isaac ◽  
Nuno Dourado ◽  
António Pedro Souto ◽  
Paulo Flores ◽  
...  

An investigation on the dynamic modeling and analysis of spatial mechanisms with spherical clearance joints including friction is presented. For this purpose, the ball and the socket, which compose a spherical joint, are modeled as two individual colliding components. The normal contact-impact forces that develop at the spherical clearance joint are determined by using a continuous force model. A continuous analysis approach is used here with a Hertzian-based contact force model, which includes a dissipative term representing the energy dissipation during the contact process. The pseudopenetration that occurs between the potential contact points of the ball and the socket surface, as well as the indentation rate play a crucial role in the evaluation of the normal contact forces. In addition, several different friction force models based on the Coulomb's law are revisited in this work. The friction models utilized here can accommodate the various friction regimens and phenomena that take place at the contact interface between the ball and the socket. Both the normal and tangential contact forces are evaluated and included into the systems' dynamics equation of motion, developed under the framework of multibody systems formulations. A spatial four-bar mechanism, which includes a spherical joint with clearance, is used as an application example to examine and quantify the effects of various friction force models, clearance sizes, and the friction coefficients.


Author(s):  
Filipe Marques ◽  
Fernando Isaac ◽  
Nuno Dourado ◽  
António Pedro Souto ◽  
Paulo Flores ◽  
...  

An investigation on the dynamic modeling and analysis of spatial mechanisms with spherical clearance joints including friction is presented. For this purpose, the ball and the socket which compose a spherical joint are modeled as two individual colliding components. The normal contact-impact forces that develop at the spherical clearance joint are determined by using a continuous force model. A continuous analysis approach is used here with a Hertzian based contact force model, which includes a dissipative term representing the energy dissipation during the contact process. The pseudo-penetration that occurs between the potential contact points of the ball and the socket surface, as well as the indentation rate play a crucial role in the evaluation of the normal contact forces. In addition, several different friction force models based on the Coulomb’s law are revisited in this work. The friction models utilized here can accommodate the various friction regimens and phenomena that take place at the contact interface between the ball and the socket. Both the normal and tangential contact forces are evaluated and included into the systems’ dynamics equation of motion, developed under the framework of multibody systems formulations. A spatial four bar mechanism, which includes a spherical joint with clearance, is used as an application example to examine and quantify the effects of various friction force models, clearance sizes, and the friction coefficients.


Sign in / Sign up

Export Citation Format

Share Document