A new bionic hydraulic actuator system for legged robots with impact buffering, impact energy absorption, impact energy storage, and force burst

Robotica ◽  
2021 ◽  
pp. 1-18
Author(s):  
Jiaqi Li ◽  
Dacheng Cong ◽  
Yu Yang ◽  
Zhidong Yang

Abstract It is a big challenge for bionic legged robots to realize desired jumping heights and forward-running speeds, let alone achieve springbok-style jump-running. A key limitation is that there is no actuator system that can mimic the springbok’s muscle system to drive leg–foot system movements. In this paper, we analyze the movement process of springboks and summarize some key characteristics of actuator systems. Some key concepts are then identified based on these key characteristics. Next, we propose a new bionic hydraulic joint actuator system with impact buffering, impact energy absorption, impact energy storage, and force burst, which can be applied to various legged robots to achieve higher running speeds, higher jumping heights, longer endurance, heavier loads, and lighter mass.

2010 ◽  
Vol 26 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Darin R. Lunt ◽  
Deborah A. Mendel ◽  
William A. Brantley ◽  
F. Michael Beck ◽  
Sarandeep Huja ◽  
...  

2016 ◽  
Vol 838 ◽  
pp. 29-35
Author(s):  
Michał Landowski ◽  
Krystyna Imielińska

Flexural strength and low velocity impact properties were investigated in terms of possibile improvements due to epoxy matrix modification by SiO2 nanoparticles (1%, 2%, 3%, 5%, 7%wt.) in glass/epoxy laminates formed using hand lay-up method. The matrix resin was Hexion L285 (DGEBA) with Nanopox A410 - SiO2 (20 nm) nanoparticle suspension in the base epoxy resin (DGEBA) supplied by Evonic. Modification of epoxy matrix by variable concentrations of nanoSiO2 does not offer significant improvements in the flexural strength σg, Young’s modulus E and interlaminar shear strength for 1% 3% and 5% nanoSiO2 and for 7% a slight drop (up to ca. 15-20%) was found. Low energy (1J) impact resistance of nanocomposites represented by peak load in dynamic impact characteristics was not changed for nanocompoosites compared to the unmodified material. However at higher impact energy (3J) nanoparticles appear to slightly improve the impact energy absorption for 3% and 5%. The absence or minor improvements in the mechanical behaviour of nanocomposites is due to the failure mechanisms associated with hand layup fabrication technique: (i.e. rapid crack propagation across the extensive resin pockets and numerous pores and voids) which dominate the nanoparticle-dependent crack energy absorption mechanisms (microvoids formation and deformation).


2009 ◽  
Vol 1 (1) ◽  
pp. 38-45 ◽  
Author(s):  
John D. Currey ◽  
Tomas Landete-Castillejos ◽  
Jose A. Estevez ◽  
Augusto Olguin ◽  
Andres J. Garcia ◽  
...  

2019 ◽  
pp. 214-252
Author(s):  
Elizabeth Fisher ◽  
Bettina Lange ◽  
Eloise Scotford

This chapter concerns two key concepts of environmental law: environmental principles and environmental policy. Both concepts are well known to those who study and practise UK and EU law, but that familiarity can be deceiving when it comes to understanding their role in environmental law, because both principles and policy perform important, distinctive, and evolving functions. Environmental principles are highly symbolic ideas of environmental policy that have been developing prominent roles in environmental law globally, including in EU environmental law. Environmental policy is often implicated in environmental law regimes because of the need to respond quickly to changing circumstances and provide detailed and technical guidance in complex policy areas. Determining the legal implications of extensive reliance on policy in environmental law is thus important. Exploring both these distinctive legal features of environmental law—principle and policy—helps to elucidate different aspects of environmental law as a subject, interrogating the jurisprudential nature of environmental law and revealing key characteristics of its developing doctrine.


2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


Sign in / Sign up

Export Citation Format

Share Document