scholarly journals The Young`s Modulus and Impact Energy Absorption of Wet and Dry Deer Cortical Bone

2009 ◽  
Vol 1 (1) ◽  
pp. 38-45 ◽  
Author(s):  
John D. Currey ◽  
Tomas Landete-Castillejos ◽  
Jose A. Estevez ◽  
Augusto Olguin ◽  
Andres J. Garcia ◽  
...  
2010 ◽  
Vol 26 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Darin R. Lunt ◽  
Deborah A. Mendel ◽  
William A. Brantley ◽  
F. Michael Beck ◽  
Sarandeep Huja ◽  
...  

2016 ◽  
Vol 838 ◽  
pp. 29-35
Author(s):  
Michał Landowski ◽  
Krystyna Imielińska

Flexural strength and low velocity impact properties were investigated in terms of possibile improvements due to epoxy matrix modification by SiO2 nanoparticles (1%, 2%, 3%, 5%, 7%wt.) in glass/epoxy laminates formed using hand lay-up method. The matrix resin was Hexion L285 (DGEBA) with Nanopox A410 - SiO2 (20 nm) nanoparticle suspension in the base epoxy resin (DGEBA) supplied by Evonic. Modification of epoxy matrix by variable concentrations of nanoSiO2 does not offer significant improvements in the flexural strength σg, Young’s modulus E and interlaminar shear strength for 1% 3% and 5% nanoSiO2 and for 7% a slight drop (up to ca. 15-20%) was found. Low energy (1J) impact resistance of nanocomposites represented by peak load in dynamic impact characteristics was not changed for nanocompoosites compared to the unmodified material. However at higher impact energy (3J) nanoparticles appear to slightly improve the impact energy absorption for 3% and 5%. The absence or minor improvements in the mechanical behaviour of nanocomposites is due to the failure mechanisms associated with hand layup fabrication technique: (i.e. rapid crack propagation across the extensive resin pockets and numerous pores and voids) which dominate the nanoparticle-dependent crack energy absorption mechanisms (microvoids formation and deformation).


2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


2018 ◽  
Vol 203 ◽  
pp. 917-926 ◽  
Author(s):  
M.M. Moure ◽  
I. Rubio ◽  
J. Aranda-Ruiz ◽  
J.A. Loya ◽  
M. Rodríguez-Millán

2014 ◽  
Vol 78 (4) ◽  
pp. 142-148
Author(s):  
Tetsuya Ueda ◽  
Masaki Nagao ◽  
Naoko Ikeo ◽  
Kota Washio ◽  
Akihito Kinoshita ◽  
...  

2018 ◽  
Vol 86 (1) ◽  
Author(s):  
Zhe Chen ◽  
Tonghao Wu ◽  
Guodong Nian ◽  
Yejie Shan ◽  
Xueya Liang ◽  
...  

Energy absorption structures are widely used in many scenarios. Thin-walled members have been heavily employed to absorb impact energy. This paper presents a novel, Ron Resch origami pattern inspired energy absorption structure. Experimental characterization and numerical simulations were conducted to study the energy absorption of this structure. The results show a new collapse mode in terms of energy absorption featuring multiple plastic hinge lines, which lead to the peak force reduction and larger effective stroke, as compared with the classical honeycomb structure. Overall, the Ron Resch origami-inspired structure and the classical honeycomb structure are quite complementary as energy absorption structures.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
M. S. Othman ◽  
Z. Ahmad

This paper treats the crash analysis and energy absorption response of Rain Forest Vehicle (RFV) subjected to frontal impact scenario namely impacting rigid wall and column. Dynamic computer simulation techniques validated by experimental testing are used to carry out a crash analysis of such vehicle. The study aims at quantifying the energy absorption capability of frontal section of RFV under impact loading, for variations in the load transfer paths and geometry of the crashworthy components. It is evident that the proposed design of the RFV frontal section are desirable as primary impact energy mitigation due to its ability to withstand and absorb impact loads effectively. Furthermore, it is found that the impact energy transmitted to the survival room may feasibly be minimized in these two impact events. The primary outcome of this study is design recommendation for enhancing the level of safety of the off-road vehicle where impact loading is expected.   


Sign in / Sign up

Export Citation Format

Share Document