Caledonian and related events in Scotland

Author(s):  
B. J. Bluck

ABSTRACTThe Scottish Caledonides, sited near the triple-junction between Laurentia, Amazonia and Baltica, is divided into at least five discrete blocks, each with a history incompatible with that of the block now lying adjacent to it. With the exception of the Hebridian margin, with its extensional Torridonian basins and Cambrian passive margin sequence, all blocks have undergone terrane-scale movements. The Moine, Central Highland Division and the bulk (if not all) of the Grampian Group have shared a common regional metamorphism, involving thickening and uplift, atc. 800 Ma andc. 450–480 Ma. This is incompatible with their being in the extensional regime that appears to characterise much of Neoproterozoic Laurentia. They, along with the polymetamorphic Dalradian block, now replace a region of passive margin and an unknown width of attendant Iapetus oceanic crust. These metamorphic blocks are grossly out-of-place.The Midland Valley is a severely contracted block of ancient crust, once fringed by extensive oceanic basins to the N and S. An Ordovician–Devonian arc was founded on this older craton, and supplied sediment to basins on either side of it. This arc, during its Lower Palaeozoic life, matured, finally to yield relatively quartz-rich sediment, but was re-activated during the Devonian. An arc, similar to that of the Midland Valley, also supplied sediment to the Southern Uplands. Metamorphic debris in the Southern Uplands had a provenance in either this arc-basement or in a basement somewhere along the orogen. No metamorphic detritus in the Highland Border Complex has yet been demonstrated to have a Dalradian source.Much of Scotland was assembled in a strike-slip regime. Evidence for strike-slip tectonics can be seen from the Late Proterozoic through to the Devonian. In periods of transtension, basins opened to accumulate sediment; in periods of transpression, those sediments were compressed and uplifted to yield sediments to successor basins. In the Neoproterozoic, during the phase of transpression, the basins were buried and metamorphosed, but during the Palaeozoic the basins were at a much higher level and escaped metamorphism.A substantial volume of the Neoproterozoic–Palaeozoic sediment that accumulated in Scotland was derived from two orogens, both of which were sited some distance away. During the Neoproterozoic, the Grenville orogen was the main source, and in later (Devonian) time sediment accumulated in Scotland from the major, Late Palaeozoic continent–continent collision of Greenland–Scandinavia. These two external sources were augmented by a substantial contribution of sediment supplied from the Midland Valley arc or its lateral equivalent and by mild uplifts within the Scottish basements.

1992 ◽  
Vol 13 (1) ◽  
pp. 1-4 ◽  
Author(s):  
B. J. Bluck ◽  
W. Gibbons ◽  
J. K. Ingham

AbstractThe Precambrian and Lower Palaeozoic foundations of the British Isles may be viewed as a series of suspect terranes whose exposed boundaries are prominent fault systems of various kinds, each with an unproven amount of displacement. There are indications that they accreted to their present configuration between late Precambrian and Carboniferous times. From north to south they are as follows.In northwest Scotland the Hebridean terrane (Laurentian craton in the foreland of the Caledonian Orogen) comprises an Archaean and Lower Proterozoic gneissose basement (Lewisian) overlain by an undeformed cover of Upper Proterozoic red beds and Cambrian to early mid Ordovician shallow marine sediments. The terrane is cut by the Outer Isles Thrust, a rejuvenated Proterozoic structure, and is bounded to the southeast by the Moine Thrust zone, within the hanging wall of which lies a Proterozoic metamorphic complex (Moine Supergroup) which constitutes the Northern Highlands terrane. The Moine Thrust zone represents an essentially orthogonal closure of perhaps 100 km which took place during Ordovician-Silurian times (Elliott & Johnson 1980). The Northern Highlands terrane records both Precambrian and late Ordovician to Silurian tectonometamorphic events (Dewey & Pankhurst 1970) and linkage with the Hebridean terrane is provided by slices of reworked Lewisian basement within the Moine Supergroup (Watson 1983).To the southwest of the Great Glen-Walls Boundary Fault system lies the Central Highlands (Grampian) terrane, an area dominated by the late Proterozoic Dalradian Supergroup which is underlain by a gneissic complex (Central Highland Granulites) that has been variously interpreted as either older


2009 ◽  
Vol 4 ◽  
pp. 201-221 ◽  
Author(s):  
S. D. Sokolov ◽  
G. Ye. Bondarenko ◽  
P. W. Layer ◽  
I. R. Kravchenko-Berezhnoy

Abstract. Geochronologic and structural data from the terranes of the South Anyui suture zone record a protracted deformational history before, during and after an Early Cretaceous collision of the passive margin of the Chukotka-Arctic Alaska continental block with the active continental margin of the North Asian continent. Preceding this collision, the island arc complexes of the Yarakvaam terrane on the northern margin of the North Asian craton record Early Carboniferous to Neocomian ages in ophiolite, sedimentary, and volcanic rocks. Triassic to Jurassic amphibolites constrain the timing of subduction and intraoceanic deformation along this margin. The protracted (Neocomian to Aptian) collision of the Chukotka passive margin with the North Asian continent is preserved in a range of structural styles including first north verging folding, then south verging folding, and finally late collisional dextral strike slip motions which likely record a change from orthogonal collision to oblique collision. Due to this collision, the southern passive margin of Chukotka was overthrust by tectonic nappes composed of tectono-stratigraphic complexes of the South Anyui terrane. Greenschists with ages of 115–119 Ma are related to the last stages of this collision. The postcollisional orogenic stage (Albian to Cenomanian) is characterized by sinistral strike slip faults and an extensional environment.


2010 ◽  
Vol 181 (3) ◽  
pp. 227-241 ◽  
Author(s):  
Dominique Gasquet ◽  
Jean-Michel Bertrand ◽  
Jean-Louis Paquette ◽  
Jérémie Lehmann ◽  
Gueorgui Ratzov ◽  
...  

Abstract U-Pb and Th-Pb dating of monazite from hydrothermal quartz veins (“Alpine veins”) from the Lauzière massif (North Belledonne) together with Ar/Ar ages of adularias from the same veins constrain the age of the last tectono-metamorphic events that affected the External Crystalline Massifs (ECM). Ages obtained are surprisingly young. The study of the structural context of the veins combined with our chronological data, allow us to propose a tectonic scenario of the northern ECM for the 15-5 Ma period, which was poorly documented so far. The quartz veins are of two types: (i) the oldest are poorly mineralized (chlorite and epidote), flat-lying veins. The quartz fibres (= extension direction) are near vertical and seem to be associated with a subvertical dissolution schistosity superimposed upon an early Alpine deformation underlined by “mini-biotite”. They bear a sub-horizontal stretching lineation; (ii) the youngest veins are very rich in various minerals (anatase, rutile, phénacite, meneghinite, beryl, synchysite, ….). They are almost vertical. Their “en echelon” geometry as well as the horizontal attitude of their quartz fibres show a dextral strike-slip regime. Two groups of Th-Pb ages have been obtained: 11 to 10 Ma and 7 to 5 Ma. They were obtained from the most recent veins (vertical veins) sampled in different areas of the massif. The ca. 10 Ma ages are related to veins in the Lauzière granite and its metamorphic country-rocks at about 2 km from the eastern contact of the massif, while the ages of ca. 5 Ma correspond to veins occurring in mylonites along this contact. Adularias provided Ar/Ar ages at ca. 7 Ma. By contrast, a monazite from a vein of the Pelvoux massif (Plan du Lac) yielded a Th-Pb age of 17.6 Ma but in a different structural setting. Except fission track ages, there are very little ages of this range published in the recent literature on the Alps. The latter concern always gold mineralized veins (NE Mont Blanc and SW Lepontine dome). The last compressive tectonic regime dated between 15 and 12 Ma is coeval with (i) the late “Roselend thrust” event, which is recorded in the Mont Blanc by shear-zones with vertical lineation, (ii) the last movements in the basal mylonites of the Swiss Nappes, (iii) the horizontal Alpine veins from the Mont Blanc and Belledonne massifs (with vertical quartz fibres), which are similar to the early veins of the Lauzière. On the contrary, the vertical veins of the Lauzière, dated between 11 and 5 Ma, correspond to a dextral strike slip regime. This suggests that most of the strike-slip tectonics along the ECM took place during two stages (ca. 10 Ma and ca. 7-5 Ma) and not only at 18 Ma as had been proposed previously. Our ages are consistent with the late Miocene-Pliocene overlap of the Digne thrust to the South and to part of the normal movement along the Simplon fault to the North. Thus, all the external crystalline massifs were tectonically active during the late Miocene. This suggests that tectonic events in the external alpine belt may have contributed to some extent to the geodynamical causes of the Messinian crisis.


2021 ◽  
Author(s):  
Åse Hestnes ◽  
Deta Gasser ◽  
Thomas Scheiber ◽  
Joachim Jacobs ◽  
Anna K. Ksienzyk ◽  
...  

<p>Brittle fracture and fault networks control the location of topographic features such as valleys and ridges and active faulting can lead to topographic rejuvenation. In Western Norway, however, it is debated how much faulting has contributed to rejuvenating of the topography during the late Mesozoic and Cenozoic. Geometric and temporal constraints on the brittle evolution are therefore important to obtain a comprehensive picture of the post-Caledonian topographic evolution of this region. In this study, we combine remote sensing, structural field measurements, paleo-stress analysis and isotopic dating to study the brittle evolution of a larger region of Western Norway. The region spans from the Sognefjord in the south to the Møre margin in the north. Lineament studies reveal important lineament sets trending N-S, NE-SW, E-W and NW-SE. Field observations show that these lineament sets correspond to both dip-slip and strike-slip faults, some of them parallel to ductile precursor structures and some cutting the ductile fabric. Epidote, chlorite, quartz and zeolite are the dominant mineralizations on fracture and fault surfaces. There is no clear correlation between the type of mineralization and fracture orientation in the region. Paleostress analysis on fault-slip data (n = 173), including faults reactivating older structures, show a good fit with a general E-W extensional regime. However, a considerable amount of faults (n = 115) formed under a strike-slip regime, which has so far not been documented in the region. We combine these findings with K-Ar fault gouge dating from six faults where five fractions (6-10 µm, 2-6 µm, 0.4-2 µm, 0.1-0.4 µm, <0.1µm) from each sample were analysed. These faults represent two of the four fracture sets observed, trending N-S and NE-SW, respectively, and show either strike-slip or dip-slip kinematics. XRD-data from these gouges show that K-feldspar and smectite are the main sources of potassium. The ages show a spread from the Triassic to the Cretaceous, where older ages can be affected by K-feldspar inherited from the host rock. Our results point to an important phase of Mesozoic strike-slip faulting in the region, with steep faults controlling the location of several major valleys. Extensional dip-slip faults might have contributed to the rejuvenation of the footwall topography.</p>


2019 ◽  
Vol 116 (52) ◽  
pp. 26367-26375 ◽  
Author(s):  
Xuhua Shi ◽  
Paul Tapponnier ◽  
Teng Wang ◽  
Shengji Wei ◽  
Yu Wang ◽  
...  

The 2016, moment magnitude (Mw) 7.8, Kaikoura earthquake generated the most complex surface ruptures ever observed. Although likely linked with kinematic changes in central New Zealand, the driving mechanisms of such complexity remain unclear. Here, we propose an interpretation accounting for the most puzzling aspects of the 2016 rupture. We examine the partitioning of plate motion and coseismic slip during the 2016 event in and around Kaikoura and the large-scale fault kinematics, volcanism, seismicity, and slab geometry in the broader Tonga–Kermadec region. We find that the plate motion partitioning near Kaikoura is comparable to the coseismic partitioning between strike-slip motion on the Kekerengu fault and subperpendicular thrusting along the offshore West–Hikurangi megathrust. Together with measured slip rates and paleoseismological results along the Hope, Kekerengu, and Wairarapa faults, this observation suggests that the West–Hikurangi thrust and Kekerengu faults bound the southernmost tip of the Tonga–Kermadec sliver plate. The narrow region, around Kaikoura, where the 3 fastest-slipping faults of New Zealand meet, thus hosts a fault–fault–trench (FFT) triple junction, which accounts for the particularly convoluted 2016 coseismic deformation. That triple junction appears to have migrated southward since the birth of the sliver plate (around 5 to 7 million years ago). This likely drove southward stepping of strike-slip shear within the Marlborough fault system and propagation of volcanism in the North Island. Hence, on a multimillennial time scale, the apparently distributed faulting across southern New Zealand may reflect classic plate-tectonic triple-junction migration rather than diffuse deformation of the continental lithosphere.


1984 ◽  
Vol 74 (4) ◽  
pp. 183-191 ◽  
Author(s):  
Lorraine E. Craig

ABSTRACTSediments, mainly sandstones, conglomerates and shales, accumulated in small turbidite fans along the northern arc–trench margin of the Iapetus Ocean from middle Ordovician to Silurian time. These fans, together with the underlying pelagic facies and part of the oceanic crust, were sliced and accreted northward resulting in the Lower Palaeozoic accretionary prism which forms the Scottish Southern Uplands and the Longford-Down inlier in Ireland. North Down is the continuation of the Northern belt of the Southern Uplands of Scotland into Ireland, bounded to the S by the Orlock Bridge fault. Lithological and petrographical comparison with the rest of the Northern belt indicates closer affinities with the Southern Uplands of Scotland than with the western end of the Longford-Down inlier. Major ENE—WSW-trending Caledonian strike faults define five blocks, in which new formations of Caradoc and ? Ashgill age are defined. Pillowed spilitic rock, interpreted as a fragment of the ocean-floor, is only recognised in the Ballygrot block. Pelagic and hemipelagic black shales and cherts are overlain by arenaceous sediments in all blocks.


2017 ◽  
Vol 58 (10) ◽  
pp. 2055-2087 ◽  
Author(s):  
Paolo Di Giuseppe ◽  
Samuele Agostini ◽  
Michele Lustrino ◽  
Özgür Karaoğlu ◽  
Mehmet Yilmaz Savaşçın ◽  
...  

2008 ◽  
Vol 179 (2) ◽  
pp. 209-223 ◽  
Author(s):  
Louis Andreani ◽  
Xavier Le Pichon ◽  
Claude Rangin ◽  
Juventino Martínez-Reyes

Abstract Numerous studies, mainly based on structural and paleomagnetic data, consider southern Mexico as a crustal block (southern Mexico block, SMB) uncoupled from the North American plate with a southeast motion with respect to North America, accommodated by extension through the central Trans-Mexican volcanic belt (TMVB). On the other hand, the accommodation of this motion on the southeastward boundary, especially at the Cocos–Caribbean–North American triple junction, is still debated. The boundary between the SMB and the North American plate is constituted by three connected zones of deformation: (1) left-lateral transtension across the central TMVB, (2) left-lateral strike-slip faulting along the eastern TMVB and Veracruz area and (3) reverse and left-lateral strike-slip faulting in the Chiapas area. We show that these three active deformation zones accommodate a counterclockwise rotation of the SMB with respect to the North American plate. We specially discuss the Quaternary motion of the SMB with respect to the surrounding plates near the Cocos–Caribbean–North American triple junction. The model we propose predicts a Quaternary counterclockwise rotation of 0.45°/Ma with a pole located at 24.2°N and 91.8°W. Finally we discuss the geodynamic implications of this counterclockwise rotation. The southern Mexico block motion is generally assumed to be the result of slip partitioning at the trench. However the obliquity of the subduction is too small to explain slip partitioning. The motion could be facilitated by the high thermal gradient and gravitational collapse that affects central Mexico and/or by partial coupling with the eastward motion of the Caribbean plate.


2020 ◽  
Author(s):  
Saskia Köhler ◽  
Florian Duschl ◽  
Hamed Fazlikhani ◽  
Daniel Köhn

<p>The Franconian Basin in SE Germany has seen a complex stress history indicative of several extensional and compressional phases e.g. the Iberia-Europe collision acting on a pre-faulted Variscan basement. Early Cretaceous extension is followed by Late Cretaceous inversion with syntectonic sedimentation and deformation increasing progressively from SW to NE culminating in the Franconian Line where basement rocks are thrusted over the Mesozoic cover. The development of this intracontinental fold-and-thrust belt is followed by Paleogene extension associated with the formation of the Eger Graben, which is then succeeded by a new compressional event as a consequence of the Alpine orogeny.</p><p>We use existing data from literature and geological maps and new field data to construct balanced cross-sections in order to reveal the architecture of the Cretaceous fold-and-thrust belt. In addition, we undertake paleostress analysis using a combination of fault slip information, veins and tectonic and sedimentary stylolites to identify stress events in the study area, as well as their nature and timing. Furthermore, we try to understand how basement faults influence younger faults in the cover sequence.</p><p>Our paleostress data indicates that at least five different stress events existed in Mesozoic to Cenozoic times (from old to young): (1) an N-S directed extensional stress field with E-W striking normal faults, (2) a NNE-SSW directed compressional stress field causing thrusting and folding of the cover sequence, (3) a strike slip regime with NE-SW compression and NW-SE extension, (4) an extensional event with NW-SE extension and the formation of ENE-WSW striking faults according to the formation of the Eger Graben in the E, and finally (5) a strike slip regime with NW-SE compression and NE-SW extension related to Alpine stresses. The geometry of faulting and deformation varies significantly over the regions with respect to the influence of and distance to inherited Variscan structures.</p><p>We argue that the extensional event of stress field (1) provides spacing for Early Cretaceous sedimentation in the Franconian Basin. This is followed by the creation of an intracontinental fold-and-thrust belt during stress fields (2) and (3) with a slight rotation of the main compressive stress during these events in Late Cretaceous. We associate the following extension to the development of the Eger Graben in Miocene time. Finally, a NW-SE directed compression related to Alpine stresses in an intracontinental strike-slip regime is following. Reconstruction of the Cretaceous fold-and-thrust belt reveals mainly fault propagation folding with deep detachments sitting below the cover sequence indicating thick-skinned tectonics. We argue that the Franconian Line is a thrust with a steeply dipping root that belongs to the same fold-and-thrust belt.</p>


1995 ◽  
Vol 132 (2) ◽  
pp. 139-149 ◽  
Author(s):  
G. J. H. Oliver ◽  
M. R. W. Johnson ◽  
A. E. Fallick

AbstractIllite crystallinity data from the Lesser Himalaya of Garhwal show that the upper Paleocene-lower Eocene Subathu Formation, deposited immediately prior to or early in the Himalayan collision, has not suffered significant regional metamorphism. The regional metamorphism in the upper Precambrian–lower Palaeozoic Lesser Himalaya must therefore be precollisional. Illite crystallinity results from Lesser Himalayan fossiliferous Permian strata show grades of metamorphism intermediate between upper Paleocene–lower Eocene and Proterozoic–lower Palaeozoic strata indicating a pre-Permian regional metamorphism for the latter.K–Ar whole rock cooling ages provide supporting evidence for pre-collisional regional metamorphism in the Lesser Himalaya. Slates and phyllites below the Main Central Thrust (MCT) show pre-Cenozoic whole rock ages, as old as Ordovician (486 Ma). Whilst resetting of K–Ar whole rock ages has occurred locally in pervasively cleaved Palaeozoic strata (near thrusts?), fracture cleaved Permian and upper Paleocene–lower Eocene sediments give whole rock ages compatible with diagenesis. The illite crystallinity results confirm that these sediments have not been heated above mica blocking temperatures.Muscovite40Ar–39Ar and K–Ar mineral ages within the 5 km thick MCT zone are as young as 8 Ma indicating that temperatures of above ~ 350°C were maintained in the MCT zone for over 10 Ma after high temperature (~ 550°C) shearing on the MCT. This heating did not affect the MCT footwall Lesser Himalaya to any regional extent, where pre-Permian low grade regional metamorphism has not been overprinted.


Sign in / Sign up

Export Citation Format

Share Document