Method for measuring gas production kinetics

1998 ◽  
Vol 22 ◽  
pp. 209-211 ◽  
Author(s):  
D. R. Mertens ◽  
P. J. Weimer

Methodology can play a critical rôle in the measurement of digestion kinetics, especially when the objective is to define kinetic parameters for use in formulating rations or modelling animal responses. Measurement of gas production kinetics provides the opportunity to evaluate the rate of digestion of the soluble, more rapidly fermenting fractions of foods but has the potential for being more sensitive to the in vitro procedure used. Differences among procedures that have little impact on digestion of dry matter after 48 h of incubation, may have dramatic effects on fermentation of soluble matter during the first 20 h. Our objective was to develop a method for measuring the kinetics of gas production that would minimize any detrimental effects associated with the in vitro system and provide estimates of digestion kinetics that can be used to both describe foods for ration formulation systems and provide parameters for models of ruminal digestion.

1998 ◽  
Vol 22 ◽  
pp. 95-97
Author(s):  
D. R. Mertens ◽  
P. J. Weimer ◽  
G. M. Waghorn

The kinetics of gas production during ruminal fermentation may provide valuable information about foods that can be used to formulate diets and model animal responses. However, measurement of digestion kinetics is affected by methodology and techniques must be established that provide accurate and precise estimates of kinetic parameters. Because gas production measurements provide the opportunity to estimate the digestion kinetics of both soluble and insoluble matter in foods, it would be desirable to use this technique on a wide variety of forages, grains, supplements, and by-product foods. Applying an in vitro technique to such a wide variety of substrates raises questions about the type of inoculum that should be used. The objective of our study was to evaluate the effects of donor animal and its diet on the measurement of gas production kinetics using both forage and concentrate substrates.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1957
Author(s):  
Margarita Novoa-Garrido ◽  
Carlos Navarro Marcos ◽  
María Dolores Carro Travieso ◽  
Eduarda Molina Alcaide ◽  
Mogens Larsen ◽  
...  

The study analyzed the characteristics, chemical composition, and in vitro gas production kinetics of Porphyra umbilicalis and Saccharina latissima silages. Each seaweed was ensiled in vacuum bags (three bags/silage) following a 2 × 3 factorial design, with two pre-treatments (unwilted or pre-wilted) and three silage types: unwashed seaweed ensiled without additive; seaweed washed and ensiled without additive; and seaweed washed and ensiled with 4 g of formic acid (FAC) per kg seaweed. Silages were kept for 3 months in darkness at 20 °C. Pre-wilting prevented (p < 0.001) effluent formation and reduced (p ≤ 0.038) the production of NH3-N and volatile fatty acids for both seaweeds. Both pre-wilting and washing increased (p < 0.05) the ruminal degradability of P. umbilicalis silages but not of S. latissima silages. The pH of the FAC-treated silages was below 4.0, but ranged from 4.54 to 6.23 in non FAC-treated silages. DL-lactate concentrations were low (≤23.0 g/kg dry matter) and acetate was the predominant fermentation product, indicating a non-lactic fermentation. The estimated ruminal degradability of the P. umbilicalis and S. latissima silages was as average, 59.9 and 86.1% of that for high-quality rye-grass silages, respectively, indicating a medium-low nutritional value of these seaweed silages for ruminants.


1998 ◽  
Vol 22 ◽  
pp. 215-216
Author(s):  
A. T. Adesogan ◽  
E. Owen ◽  
D. I. Givens

Menkeet al. (1979), Beuvinket al. (1992) and Theodorouet al. (1994) developed techniques for measuring the time course of gas production of foods fermentedin vitrowith rumen fluid. These techniques require description of the fermentation profile with an appropriate mathematical model. Although several authors have used these techniques to study the ruminal fermentation of foods, little information is available on the suitability of the model chosen for describing the fermentation profile of the food under study. In this study, the models of Ørskov and McDonald (1979), Franceet al. (1993) and Beuvink and Kogut (1993) were fitted to thein vitrogas production profiles of 10 whole-crop wheat (WCW) forages (cv.Slepjner) to determine the model most suited to describing the data.


2003 ◽  
Vol 2003 ◽  
pp. 175-175
Author(s):  
A. R. Foroughi ◽  
A. A. Naserian ◽  
R. Valizadeh ◽  
M. Danesh Mesgaran ◽  
A. Mirhady

Biological methods are more meaningful since microorganisms and enzymes are more sensitive to factors influencing the rate and extent of digestion than are chemical methods (Getachew and et al,1997).Gas measurements provides a useful data on digestion kinetics of both soluble and insoluble fractions of feedstuffs. The objective of this experiment was to determine nutritive value evaluation of heat-treated cottonseed with in vitro gas production.


2013 ◽  
Vol 12 (7) ◽  
pp. 1234-1242 ◽  
Author(s):  
Abdelfattah ZM Salem ◽  
Chuan-she ZHOU ◽  
Zhi-liang TAN ◽  
Miguel Mellado ◽  
Moises Cipriano Salazar ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 6-15
Author(s):  
J. R. Assis ◽  
A. C. M. Assis ◽  
G. A. Fernandes

The ruminal digestion performed by ruminants is one of the essential and most important processes for the use of dietary nutrients. However, the use of mathematical models applied to digestion kinetics has been widely applied to provide prediction of animal performance, maximize the use of nutrients and reduce nutritional losses due to excreta and a reduction in the cost of animal production. In this context, it aimed to conduct a literature review on the use of mathematical models and to analyze comparisons of different models to predict ruminal digestion. The in vitro gas production technique provides direct measurement of the ruminal digestion rate associated with gas production and the respective gravimetric measurement of the food or diet under test. Nonlinear models are chosen to evaluate ruminal digestion due to a better interpretation of biological parameters, they produce exponential and sigmoidal growth equations. However, the most suitable model for evaluation depends on the type of food or diet. The two-compartment logistical model presents a better adjustment of the gas production curve, mainly for foods with a high proportion of fiber. Among this, single-compartment models can be well applied to evaluate the degradation kinetics of foods with low fibrous carbohydrate content. Therefore, the choice of the most appropriate model is up to the researcher to assess which model best suits the chemical-chemical composition of the food or diet.


Author(s):  
M.T. Dentinho ◽  
K. Khazaal ◽  
J.M. Ribeiro ◽  
E.R. Ørskov

By using separated values of kinetics of in situ dry matter (DM) degradation or in vitro gas production (Menke and Steingass, 1988) of leguminosae hays, Khazaal et al, (1993) reported high correlation with intake (r= 0.88; r= 0.79) and in vivo DM digestibility (DMD) (r= 0.94; r= 0.88). The aim of the present study was to extend the range of samples used and compare the ability of the 2 stages in vitro digestibility (Tilley and Terry, 1963), the in situ DM degradation or the gas production techniques to predict daily intake (g DM/ kgW0.75) and in vivo DM digestibility (DMD) of 19 leguminous and graminaceous hays fed to sheep.Three harvesting stages (early bloom EB, mid bloom MB or in seed IS) made from lucerne (Medicago sativa), sweet clover (Melilotus segetalis), Persian clover (Trifolium resupinatum), Rye (Secale cereale), Triticale (Triticale hexaploid), oat (Avena stativa) and a pre-bloom (PB) Italian ryegrass (Lolium multiflorum ). Each hay was fed ad libitum to 4 Merino male sheep and their intake and in vivo DMD recorded. Gas production (ml/ 200 mg DM) or in situ DM degradation (g/ 100 g DM) were determined as described by Khazaal et al, (1993) after 6, 12, 24, 48, 72 or 96 h incubation. Measured gas production or DM degradation values were fitted to the equation p=a+b(l-e-ct)(McDonald, 1981) where p is gas production or DM degradation at time t and a, b and c are constants. For nylon bag the washing loss (soluble fraction) was defined as A, the insoluble but fermentable matter was defined as B=(a+b)-A, and c is the rate of fermentation or degradation (Ørskov and Ryle, 1990).


Sign in / Sign up

Export Citation Format

Share Document