Mangrove species maintains constant nutrient resorption efficiency under eutrophic conditions

2019 ◽  
Vol 36 (1) ◽  
pp. 36-38
Author(s):  
Lili Wei ◽  
Shuh-Ji Kao ◽  
Chaoxiang Liu

AbstractMangrove species have developed nutrient conservation mechanisms to adapt to oligotrophic intertidal environments. However, nutrient enrichment occurs worldwide, particularly in estuarine and coastal regions. Mangrove species may change their adaptive strategies if nutrient availability increases substantially. To understand how nutrient resorption (a major nutrient conservation strategy) responds to nutrient enrichment, a common mangrove species in China, Aegiceras corniculatum (black mangrove), was selected, and saplings were cultivated in nutrient-enriched soils. After one year, neither N nor P resorption efficiency showed significant variations with nutrient availability and there was no difference between N and P resorption efficiency. Overall, nutrient resorption efficiency of A. corniculatum remained at ∼40%, lower than the global average levels of evergreen plants (∼50%), indicating incomplete resorption of nutrients. Incomplete resorption was also evidenced by the nutrient concentrations, resorption proficiency and N: P ratio of plant leaves. Collectively, these results indicate that black mangrove can maintain constant nutrient resorption efficiency under eutrophic conditions.

2021 ◽  
Author(s):  
Dalong Jiang ◽  
Qian Li ◽  
Qinghong Geng ◽  
Menghua Zhang ◽  
Chonghua Xu ◽  
...  

Abstract Aims Leaf nutrient resorption is sensitive to changes in soil nutrients. However, the effects of N deposition on nutrient resorption efficiency (NuRE) in plant macro-nutrients remain unclear. Poplar (Populus deltoids) is one of the most extensively cultivated hardwood species worldwide. We explored general patterns and dominant drivers of NuRE and stoichiometry of poplar plantations in response to N addition. Methods We conducted a 4-year N-addition experiment to explore NuRE and stoichiometric responses to N addition in two poplar (Populus deltoids) plantations (8- and 12-year-old stands) in a coastal region of eastern China. We measured soil and foliar (green and senesced leaves) concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) for a series of N addition treatments including N0 (0 kg N ha ‒1 yr ‒1), N1 (50 kg N ha ‒1 yr ‒1), N2 (100 kg N ha ‒1 yr ‒1), N3 (150 kg N ha ‒1 yr ‒1), and N4 (300 kg N ha ‒1 yr ‒1). Important Findings Consistent for (both) 8- and 12-year-old stands, N addition did not affect the NuRE and stoichiometry (with the exception of CaRE and CaRE:MgRE ratio). NRE-PRE scaling slopes were consistently less than 1.0 under N addition. These results suggest that NRE generally decouples from PRE within each N treatment. Moreover, these results point to robust control of green leaf nutritional status on nutrient resorption processes as indicated by the positive relationships between nutrient resorption efficiency and green leaf nutrient concentrations. Our findings provided a direct evidence that growth in 12-year-old poplar plantations was N-limited in a coastal region of eastern China.


2020 ◽  
Author(s):  
Yun Zhang ◽  
Gui-sheng Yang ◽  
Fu-Xi Shi ◽  
Rong Mao

Abstract Aims Nutrient resorption is a crucial component of plant nutrient use strategy, yet the controls on the responses of community-level nutrient resorption to altered nutrient availability remain unclear. Here, we addressed two questions: Did leaf and stem nutrient resorption respond consistently to increased nutrient availability? Was community-level plant nutrient resorption response after nutrient enrichment driven by the intra-specific plasticity in plant nutrient resorption or by altered species composition? Methods We investigated the changes in aboveground biomass, and leaf and stem nutrient resorption of individual species after three-year nitrogen (N) and phosphorus (P) additions, and assessed community-level nutrient resorption response to three-year nutrient additions in a graminoid-dominated temperate wetland, Northeast China. Important findings For both leaves and stems, N and P additions did not affect nutrient resorption efficiency, but they decreased respective nutrient resorption proficiency. Similarly, community-level N and P resorption proficiency declined with respective nutrient addition. Community-level N and P resorption efficiency was reduced by N addition primarily due to altered community composition and declined leaf:stem ratio. These results suggest that leaf and stem nutrient resorption processes exhibit consistent responses to increasing nutrient availability in the temperate wetland. These findings highlight the importance of altered species composition and biomass allocation between leaf and stem in driving community-level nutrient resorption response to nutrient enrichment.


2020 ◽  
Author(s):  
Tongrui Zhang ◽  
Frank Yonghong Li ◽  
Hao Wang ◽  
Lin Wu ◽  
Chunjun Shi ◽  
...  

Abstract Aims Nutrient resorption is a key plant nutrient conservation strategy, and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems. Defoliation is a major pathway of mowing affecting plant nutrient resorption and production in grasslands, while the effect of defoliation timing has not been unexplored. The aim of this study was to examine the effect of defoliation timing on plant nutrient resorption and production in a steppe ecosystem. Methods We conducted a field experiment in a semi-arid steppe of Inner Mongolia including four treatments: early defoliation, peak defoliation, late defoliation and non-defoliation. We measured plant nitrogen (N) and phosphorus (P) resorption at species and community levels, and quantified plant N and P fluxes in resorption, litter return and hay output. Plant production in the mowing system was assessed by hay production and quality. Important Findings Peak and late defoliation, but not early defoliation, reduced plant community N and P resorption proficiency (RP); and late defoliation reduced N resorption efficiency (RE) but not P resorption efficiency. Peak and late defoliation, but not early defoliation, reduced plant nutrient resorption flux and litter nutrient return flux. Defoliation timing did not alter root nutrient accumulation as nutrient uptake from soil likely compensated the deficit of nutrient resorption. Peak defoliation had the highest hay production and quality, while early defoliation had the lowest. Our results provide new insights into the nutrient cycling in mowing grassland, and imply that the mowing timing can be used as a tool to mediate the balance between conservation and production of steppes, and the early mowing before plant peak biomass period is recommended for conservation of the steppes while keeping sustainable pastoral production.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Baoming Du ◽  
Huawei Ji ◽  
Shirong Liu ◽  
Hongzhang Kang ◽  
Shan Yin ◽  
...  

Abstract Background Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities, which further impacts litter quality and nutrient cycling. However, the interannual variability of nutrient resorption under climate change remains unclear. Methods We investigated the five-year nutrient resorption efficiencies (NuRE, %) of 14 elements in three deciduous oak tree species (Quercus aliena var. acuteserrata, Q. glandulifera, and Q. variabilis) in a warm-temperate forest of Central China and assessed their relationships with interannual climate and soil factors. Results Nutrient resorption did not differ between species but varied significantly between different years. For each year, N, P, S, K, C, Mg, and Zn were preferentially resorbed in all of the oak species in contrast to Ca, Na, Mn, Ba, Al, Fe, Cu, which were to some extent discriminated. Among the 14 elements, the NuRE of C, N, P, S, Ca, and Mg was more sensitive to interannual climate variations in the three oak species. The carbon resorption efficiency was significantly increased during the driest year of the study (2014); N resorption efficiency was reduced with temperature; whereas N and P resorption efficiency initially decreased and then increased with precipitation. Moreover, the elements with higher NuREs typically had lower coefficient of variation (CV) in all three oak species. Conclusions Different oak species exhibited analogous nutrient conservation strategies in response to annual climate variabilities, and interannual climate variations strongly impacted plant nutrient resorption. Deciduous plants may establish a tradeoff mechanism to rebalance somatic nutrients for regrowth at the end of the growing season.


2018 ◽  
Vol 15 (9) ◽  
pp. 2873-2889 ◽  
Author(s):  
Philip M. Riekenberg ◽  
Joanne M. Oakes ◽  
Bradley D. Eyre

Abstract. Shallow coastal waters in many regions are subject to nutrient enrichment. Microphytobenthos (MPB) can account for much of the carbon (C) fixation in these environments, depending on the depth of the water column, but the effect of enhanced nutrient availability on the processing and fate of MPB-derived C (MPB-C) is relatively unknown. In this study, MPB was labeled (stable isotope enrichment) in situ using 13C-sodium bicarbonate. The processing and fate of the newly fixed MPB-C was then traced using ex situ incubations over 3.5 days under different concentrations of nutrients (NH4+ and PO43-: ambient, 2× ambient, 5× ambient, and 10× ambient). After 3.5 days, sediments incubated with increased nutrient concentrations (amended treatments) had increased loss of 13C from sediment organic matter (OM) as a portion of initial uptake (95 % remaining in ambient vs. 79–93 % for amended treatments) and less 13C in MPB (52 % ambient, 26–49 % amended), most likely reflecting increased turnover of MPB-derived C supporting increased production of extracellular enzymes and storage products. Loss of MPB-derived C to the water column via dissolved organic C (DOC) was minimal regardless of treatment (0.4–0.6 %). Loss due to respiration was more substantial, with effluxes of dissolved inorganic C (DIC) increasing with additional nutrient availability (4 % ambient, 6.6–19.8 % amended). These shifts resulted in a decreased turnover time for algal C (419 days ambient, 134–199 days amended). This suggests that nutrient enrichment of estuaries may ultimately lead to decreased retention of carbon within MPB-dominated sediments.


Sign in / Sign up

Export Citation Format

Share Document