scholarly journals Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a <sup>13</sup>C pulse-chase experiment

2018 ◽  
Vol 15 (9) ◽  
pp. 2873-2889 ◽  
Author(s):  
Philip M. Riekenberg ◽  
Joanne M. Oakes ◽  
Bradley D. Eyre

Abstract. Shallow coastal waters in many regions are subject to nutrient enrichment. Microphytobenthos (MPB) can account for much of the carbon (C) fixation in these environments, depending on the depth of the water column, but the effect of enhanced nutrient availability on the processing and fate of MPB-derived C (MPB-C) is relatively unknown. In this study, MPB was labeled (stable isotope enrichment) in situ using 13C-sodium bicarbonate. The processing and fate of the newly fixed MPB-C was then traced using ex situ incubations over 3.5 days under different concentrations of nutrients (NH4+ and PO43-: ambient, 2× ambient, 5× ambient, and 10× ambient). After 3.5 days, sediments incubated with increased nutrient concentrations (amended treatments) had increased loss of 13C from sediment organic matter (OM) as a portion of initial uptake (95 % remaining in ambient vs. 79–93 % for amended treatments) and less 13C in MPB (52 % ambient, 26–49 % amended), most likely reflecting increased turnover of MPB-derived C supporting increased production of extracellular enzymes and storage products. Loss of MPB-derived C to the water column via dissolved organic C (DOC) was minimal regardless of treatment (0.4–0.6 %). Loss due to respiration was more substantial, with effluxes of dissolved inorganic C (DIC) increasing with additional nutrient availability (4 % ambient, 6.6–19.8 % amended). These shifts resulted in a decreased turnover time for algal C (419 days ambient, 134–199 days amended). This suggests that nutrient enrichment of estuaries may ultimately lead to decreased retention of carbon within MPB-dominated sediments.

2017 ◽  
Author(s):  
Philip M. Riekenberg ◽  
Joanne M. Oakes ◽  
Bradley D. Eyre

Abstract. Shallow coastal waters in many regions are subject to nutrient over-enrichment. Microphytobenthos (MPB) can account for much of the carbon (C) fixation in these environments, depending on the depth of the water column, but the effect of enhanced nutrient availability on the processing and fate of MPB-derived C is relatively unknown. In this study, MPB were labeled (stable isotope enrichment) in situ using 13C-sodium bicarbonate. The processing and fate of the newly-fixed MPB-C was then traced using ex situ incubations over 3.5 d under different concentrations of nutrients (NH4+ and PO43−: ambient, 2× ambient, 5× ambient, and 10× ambient). After 3.5 d, sediments incubated with increased nutrient concentrations (amended treatments) had increased loss of 13C from sediment organic matter as a portion of initial uptake (95 % remaining in ambient vs 79–93 % for amended treatments) and less 13C in MPB (52 % ambient, 26–49 % amended), most likely reflecting increased turnover of MPB-derived C supporting increased production of extracellular enzymes and storage products. Loss of MPB-derived C to the water column via dissolved organic C was minimal regardless of treatment (0.4–0.6 %). Loss due to respiration was more substantial, with effluxes of dissolved inorganic C increasing with additional nutrient availability (4 % ambient, 6.6–19.8 % amended). These shifts resulted in a decreased turnover time for algal C (419 d ambient, 134–199 d amended). This suggests that nutrient enrichment of estuaries may ultimately lead to decreased retention of carbon within MPB-dominated sediments.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3456 ◽  
Author(s):  
Benjamin Mueller ◽  
Erik H. Meesters ◽  
Fleur C. van Duyl

Photosynthates released by benthic primary producers (BPP), such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC) production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light), DOC concentrations near Dictyota sp. were elevated by 15 µmol C L−1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively), or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type, light availability (including the restriction by photoinhibition), and water movement are proposed to interactively determine the DOC concentrations in the close vicinity of BPP.


2018 ◽  
Vol 46 (1) ◽  
pp. 301-308
Author(s):  
Evgenia PAPAIOANNOU ◽  
Theocharis CHATZISTATHIS ◽  
Georgios MENEXES

After forest harvesting, organic matter accumulation and soil nutrient availability are usually negatively influenced, especially during the first years. The hypothesis that 15 years after selective harvesting (15Y) the increased forest biomass, together with the enhanced nutrient recycling rates, compared to 5-years after harvesting (5Y), could restore nutrient availability and organic C accumulation (both in forest floor and soil) to similar levels to the intact site, was tested. The aim of this study was to investigate the effect of the timing of management practices (intact forest-control, 5Y, 15Y) on organic matter content, nutrient concentrations in needles, forest floor and soil, in a forest ecosystem of Picea abies L., in Rodopi mountainous area, in northern Greece. Significant differences between the intact site and the other two treatments were found in: i) soil N, P, C/N and exchangeable Ca, ii) organic matter and nutrient accumulation (basically in the upper 30 cm), iii) foliar K, Fe and Zn concentrations. In conclusion: i) forest management practices clearly influenced soil fertility and organic matter accumulation, ii) 15 years after selective harvesting nutrient and organic C accumulation in forest floor, as well as K and Fe accumulation in soil were restored to similar levels to the intact sites; thus, our hypothesis was partially correct.


2002 ◽  
Vol 6 (6) ◽  
pp. 999-1005 ◽  
Author(s):  
C. L. Biles ◽  
D. M. Paterson ◽  
R. B. Ford ◽  
M. Solan ◽  
D. G. Raffaelli

Abstract. The effect of community structure on the functioning of the ecosystem is an important issue in ecology due to continuing global species loss. The influence of infaunal community structure on the functioning of marine systems is proposed here to act primarily through bioturbation of the sediment. Nutrient concentration in the water column, generated by release from the sediment, was used as a measure of ecosystem functioning. In situ and laboratory experiments showed a significant difference in nutrient concentrations with different species treatments. Bioturbation profiles showing the incorporation of tracer particles also differed between communities with different dominant species. The behavioural differences between infaunal species, generating different modes and rates of bioturbation, are therefore proposed to influence nutrient release. The presence and quantity of bioturbating infauna also influenced the amount of sediment suspended in the water column. The increase in surface area available for microbial activity may generate an increase in nutrient cycling. Abiotic influences on sediment structure, such as flow, may have a similar effect on nutrient concentration. Annular flumes used in both laboratory and in situ experiments to generate flow conditions produced a significant increase in ammonia (NH4-N) production in macrofaunal treatments. Flow may influence the behaviour of macrofaunal species, causing changes in NH4-N production through modifying bioturbation of the sediment. Keywords: bioturbation, community structure, ccosystem functioning, estuaries, flow, infauna


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 217
Author(s):  
Xiaomei Su ◽  
Alan D. Steinman ◽  
Yunlin Zhang ◽  
Hong Ling ◽  
Dan Wu

Sediment nutrients can be released to the surface water when hydraulic disturbance becomes strong in shallow lakes, which contributes to nutrient enrichment and subsequent lake eutrophication in the water column. To explore the seasonal variations and spatial distributions exhibited by nutrients in the water column, surface sediment, and pore water of Lake Yangcheng and its major tributaries, we determined the concentrations of nitrogen (N) and phosphorus (P) throughout the lake in different seasons of 2018. Total N (TN) and total P (TP) concentrations in the connected rivers were much greater than those in the lake, indicating that external loading greatly contributed to the nutrient enrichment. TN concentration in the water column was highest in the winter, whereas TP peaked in the summer. A similar temporal pattern was observed for TN and TP in the sediment with maxima in the winter and minima in the summer; however, nutrients in the pore water were highest in the summer, in contrast to the temporal variation in the sediment. Additionally, high TN values in the water column and high TP in the three compartments were distributed primarily in the west part of the lake, while high TN concentrations in the sediment and pore water were observed mainly in the east portion of the lake. According to the enrichment factor index (an indicator evaluating the nutrient enrichment by comparing the detected contents and standard values), nutrients in the lake sediment were severely enriched with TN and TP averaging 2195.8 mg/kg and 543.0 mg/kg, respectively. The vertical distribution of TN and TP generally exhibited similar decreasing patterns with an increase in sediment depth, suggesting mineralization of TN and TP by microbes and benthic organisms. More attention and research are needed to understand the seasonality of nutrient exchange across the sediment–water interface, especially in eutrophic lakes.


2019 ◽  
Vol 36 (1) ◽  
pp. 36-38
Author(s):  
Lili Wei ◽  
Shuh-Ji Kao ◽  
Chaoxiang Liu

AbstractMangrove species have developed nutrient conservation mechanisms to adapt to oligotrophic intertidal environments. However, nutrient enrichment occurs worldwide, particularly in estuarine and coastal regions. Mangrove species may change their adaptive strategies if nutrient availability increases substantially. To understand how nutrient resorption (a major nutrient conservation strategy) responds to nutrient enrichment, a common mangrove species in China, Aegiceras corniculatum (black mangrove), was selected, and saplings were cultivated in nutrient-enriched soils. After one year, neither N nor P resorption efficiency showed significant variations with nutrient availability and there was no difference between N and P resorption efficiency. Overall, nutrient resorption efficiency of A. corniculatum remained at ∼40%, lower than the global average levels of evergreen plants (∼50%), indicating incomplete resorption of nutrients. Incomplete resorption was also evidenced by the nutrient concentrations, resorption proficiency and N: P ratio of plant leaves. Collectively, these results indicate that black mangrove can maintain constant nutrient resorption efficiency under eutrophic conditions.


2020 ◽  
Vol 12 (13) ◽  
pp. 16831-16839 ◽  
Author(s):  
Thomas E. Marler ◽  
Anders Lindstrom

An understanding of leaf nutrient relations is required for tree conservation and horticulture success.  The study of cycad leaf nutrient dynamics has expanded in recent years, but direct comparisons among reports remains equivocal due to varying sampling protocols.  We used Cycas micronesica K.D. Hill and Cycas nongnoochiae K.D. Hill trees to determine the influence on leaf nutrient concentrations of in situ versus ex situ locations and orientation of leaves within the tree canopy.  Nitrogen, phosphorus, and potassium concentrations of leaves from ex situ plants exceeded those from in situ plants, and the differences were not explained by soil nutrient differences.  Calcium concentrations of leaves varied among the site pairs, with differences primarily explained by soil calcium.  Magnesium concentrations of leaves were not different among all location pairs even though soil magnesium concentrations varied among the sites more than any of the other elements.  Differences in leaf macronutrient concentrations among four C. micronesica provenances were minimal when grown in a common garden.  Lateral orientation of leaves did not influence any of the essential elements for either of the species.  These findings indicate that the lateral orientation of cycad leaves does not influence leaf nutrient concentrations, leaf nutrient relations of cycad plants in managed ex situ settings do not align with leaf nutrient relations in habitat, and these differences are not explained by soil nutrition for most elements.  We suggest that leaf nutrient concentrations should be determined in all niche habitats within the geographic range of a cycad species in order to fully understand the leaf physiology of each species. 


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Sign in / Sign up

Export Citation Format

Share Document