The influence of environmental variables on bdelloid rotifers of the genus Rotaria in Thailand

2021 ◽  
pp. 1-8
Author(s):  
Rapeepan Jaturapruek ◽  
Diego Fontaneto ◽  
Supiyanit Maiphae

Abstract This research investigates the influence of environmental parameters that are known to affect bdelloid rotifer species richness and composition in temperate zones on the genus Rotaria in tropical zone. Our study analysed species richness and composition of the genus Rotaria from 390 samples collected from several types of aquatic habitats in Thailand. Coordinates, elevation, limnological parameters such as water temperature, conductivity, total dissolved solids, salinity, dissolved oxygen and pH were measured. A total of nine species was recorded. Of these, one species, Rotaria macrura (Ehrenberg, 1832), was a new record for Thailand and new to the oriental region, and was a yet undescribed species, Rotaria sp. The species diversity of this genus increased from eight to 10 species. The presence or absence of the genus Rotaria was significantly influenced by dissolved oxygen and habitat type. For the samples where the genus occurred, species richness was not affected by any of the limnological or bioclimatic variables. Differences in species composition were affected only by habitat type. The results support former suggestions that common abiotic parameters do not seem to strongly influence diversity in bdelloids, whereas major ecological differences between habitats influence bdelloid occurrence.

2013 ◽  
Vol 1 (1) ◽  
pp. 26
Author(s):  
Irma Pulukadan ◽  
Rene Ch Keppel ◽  
Grevo S Gerung

Alga is a marine resource of potential to fisheries and marine sector. It has an important economic value to promote the economy in Indonesia. Nowdays, algae have been used as a relatively high value fisheries commodity since it has been used for food, industrial, pharmaceutical and cosmetic raw materials. This important potential needs to be supported with understanding of its biology and ecology, so that its utilization could increase the livelihood of the coastal villagers. This study was aimed at inventorying and identifying the members of genus Caulerpa found in North Minahasa Regency waters and studying some biological and ecological aspects of the algae in the area. Resuls showed that there were 7 species recorded, Caulerpa racemosa, C. racemosa var. macrophysa, C. sertularioides, C. taxifolia, C. serrulata,C. lentillifera and C. peltata. Ecologically, the environmental parameters, such as water temperature, salinity, pH, dissolved oxygen, turbidity, were in tolerable ranges for algal growth. Bottom substrate supported the growth of genus Caulerpa as well© Saat ini alga dijadikan sebagai komoditas hasil perikanan dengan nilai ekonomis yang relatif tinggi karena manfaatnya sebagai bahan makanan serta bahan baku industri, farmasi, dan kosmetik. Potensi yang cukup penting ini harus ditunjang dengan ilmu pengetahuan tentang biologi dan ekologi dari alga laut, sehingga pemanfaatannya dapat meningkatkan taraf hidup masyarakat pesisir. Penelitian tentang kajian bioekologi alga makro genus Caulerpa di perairan Minahasa Utara ini dilaksanakan dan diharapkan dapat memberikan informasi ilmiah tentang bioekologi alga makro genus Caulerpa, sehingga dapat dimanfaatkan untuk pengembangan pemanfaatan bagi kepentingan masyarakat pesisir khususnya dan industri alga makro umumnya. Penelitian ini bertujuan untuk menginventarisasi dan mengidentifikasi alga makro genus Caulerpa di perairan Kabupaten Minahasa Utara, dan mengkaji aspek bioekologinya. Hasil penelitian menunjukkan bahwa ditemukan 7 spesies, yaitu Caulerpa racemosa, C. racemosa var. macrophysa, C. sertularioides, C. taxifolia, C. serrulata, C. lentillifera dan C. peltata. Parameter lingkungan seperti suhu, salinitas, pH, oksigen terlarut, tingkat kecerahan air berada pada kisaran yang dapat ditolerir untuk pertumbuhan alga makro, sedangkan substrat juga mendukung pertumbuhan alga makro ini©


2006 ◽  
Vol 41 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Piotr Skórka ◽  
Rafał martyka ◽  
Joanna D. Wójcik

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tahnee Manning ◽  
Arjun Venkatesh Thilagaraj ◽  
Dmitri Mouradov ◽  
Richard Piola ◽  
Clare Grandison ◽  
...  

Abstract Background Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. Results We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%—82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56–0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. Conclusion High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.


2021 ◽  
Author(s):  
Jonathan H. Raberg ◽  
David J. Harning ◽  
Sarah E. Crump ◽  
Greg de Wet ◽  
Aria Blumm ◽  
...  

Abstract. Distributions of branched glycerol dialkyl glycerol tetraethers (brGDGTs) are frequently employed for reconstructing terrestrial paleotemperatures from lake sediment archives. Although brGDGTs are globally ubiquitous, the microbial producers of these membrane lipids remain unknown, precluding a full understanding of the ways in which environmental parameters control their production and distribution. Here, we advance this understanding in three ways. First, we present 43 new high-latitude lake sites characterized by low mean annual air temperatures (MATs) and high seasonality, filling an important gap in the global dataset. Second, we introduce a new approach for analyzing brGDGT data in which compound fractional abundances (FAs) are calculated within structural groups based on methylation number, methylation position, and cyclization number. Finally, we perform linear and nonlinear regressions of the resulting FAs against a suite of environmental parameters in a compiled global lake sediment dataset (n = 182). We find that our approach deconvolves temperature, conductivity, and pH trends in brGDGTs without increasing calibration errors from the standard approach. We also find that it reveals novel patterns in brGDGT distributions and provides a methodology for investigating the biological underpinnings of their structural diversity. Warm-season temperature indices outperformed MAT in our regressions, with Months Above Freezing yielding the highest-performing model (adjusted R2 = 0.91, RMSE = 1.97 °C, n = 182). The natural logarithm of conductivity had the second-strongest relationship to brGDGT distributions (adjusted R2 = 0.83, RMSE = 0.66, n = 143), notably outperforming pH in our dataset (adjusted R2 = 0.73, RMSE = 0.57, n = 154) and providing a potential new proxy for paleohydrology applications. We recommend these calibrations for use in lake sediments globally, including at high latitudes, and detail the advantages and disadvantages of each.


2017 ◽  
Author(s):  
Dong-Mei Wu ◽  
Jian-Xin Wang ◽  
Xiao-Hui Liu ◽  
Ying-Ping Fan ◽  
Ran Jiang ◽  
...  

The objective of this study was to characterize the structure and function of microbial communities in surface seawater from the Changjiang Estuary and adjacent areas, China. Sample water was collected at 12 sites and environmental parameters were measured. Community structure was analyzed using high-throughput sequencing of 16S rDNA genes. Predictive metagenomic approach was used to predict the function of bacterial communities. Result showed that sample site A0102 had the highest bacterial abundance and diversity. The heatmap indicated that different samples could be clustered into six groups. Phylogenetic analysis showed that Proteobacteria was the predominant phylum in all samples, followed by Bacteroidetes and Actinobacteria. Alphaproteobacteria and Gammaproteobacteria were the dominant classes. The analysis of predictive metagenomic showed carbon fixation pathways in prokaryotes, nitrogen metabolism, carbon fixation in photosynthetic organisms, photosynthesis and polycyclic aromatic hydrocarbon degradation were enriched in all samples. Redundancy analysis (RDA) identified that dissolved oxygen (DO) and PO43– concentration had positive correlations with the bacterial communities while chemical oxygen demand (COD), dissolved oxygen (DO) and PO43– concentration were significantly associated with microbial functional diversity. This study adds to our knowledge of functional and taxonomic composition of microbial communities.


2019 ◽  
Vol 48 (4) ◽  
pp. 988-997 ◽  
Author(s):  
Joanna Leszczyńska ◽  
Maria Grzybkowska ◽  
Łukasz Głowacki ◽  
Małgorzata Dukowska

Abstract Chironomids (Diptera: Chironomidae) are a family of dipterans with a global distribution. Owing to their great functional diversity and ability to adapt to a wide range of environmental conditions, they often dominate in freshwater macroinvertebrate communities, playing a key role in the cycling of organic matter and the flow of energy in aquatic ecosystems. Our aim was to analyze the structure of chironomid assemblages and identify the environmental factors, including current velocity, river width, water depth, water temperature, dissolved oxygen, percentage of substrate covered by vascular plants, inorganic bottom substrate, and quantity of benthic (BPOM) and transported (TPOM) particulate organic matter, that underpin variation in species richness across a set of lowland rivers in central Poland, differing by stream order and abiotic parameters. Using an Information Theoretic Approach, we formulated a set of alternative models based on previously published work, with models fitted in a Bayesian framework using Integrated Nested Laplace Approximation. The species richness of chironomids increased with river order, achieving a maximum in third and fourth order rivers, but decreased at higher orders. The best-fitting models included a positive effect of inorganic substrate index and dissolved oxygen on chironomid species richness. The quality structure of chironomid assemblages reflected the assumptions of the River Continuum Concept showing that species richness was under the influence of factors operating at both a micro- (inorganic bottom substrate) and macro-scale (dissolved oxygen).


Author(s):  
Camila Rodrigues Cabral ◽  
Leidiane Pereira Diniz ◽  
Alef Jonathan da Silva ◽  
Gustavo Fonseca ◽  
Luciana Silva Carneiro ◽  
...  

Assessing zooplankton biodiversity is essential to support freshwater management/conservation programs. Here, we investigated the zooplankton community structure from 180 shallow lakes in northeastern Brazil and analyzed them according to biome (Atlantic Forest or Caatinga), the origin of ecosystems (natural or man-made lakes), and habitat type (pelagic or littoral). Additionally, we provided an updated list of zooplankton species. We registered 227 species (137 Rotifera, 65 Cladocera, 25 Copepoda). The most common species of each major group among all lakes were the cladoceran Ceriodaphina cornuta, the rotifers Brachionus havanaensis and Lecane bulla, and the copepod Termocyclops decipiens. Species related to aquatic vegetation, as the Lecanidae rotifers and phytophilous cladocerans, were more frequent along Atlantic Forest biome and natural lakes. On the other hand, species that are bioindicators of eutrophic waters were more common at the Caatinga biome and man-made lakes. Atlantic Forest and Caatinga biomes had similar species richness, but different community compositions for all zooplankton groups, reinforcing the Caatinga significance for the Brazilian aquatic biodiversity. The type of habitat was the most important factor structuring species richness, with higher richness in the littoral region when compared to the pelagic. A result of many unique species of Cladocera and Rotifera associated with the aquatic vegetation were observed. The findings demonstrated that conservation/management plans cannot generalize zooplankton species distribution across different biomes, origins and even within a single lake, between the pelagic and littoral zones.


2020 ◽  
Vol 117 (27) ◽  
pp. 15450-15459 ◽  
Author(s):  
Torben Riehl ◽  
Anne-Cathrin Wölfl ◽  
Nico Augustin ◽  
Colin W. Devey ◽  
Angelika Brandt

Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.


2016 ◽  
Vol 28 (0) ◽  
Author(s):  
Gabriela Santos Tibúrcio ◽  
Carolina da Silva Carvalho ◽  
Fabio Cop Ferreira ◽  
Roberto Goitein ◽  
Milton Cezar Ribeiro

Abstract Objective In this study we aimed to understand how extrinsic environmental factors measured in the watercourses and the surrounding landscape influence the ichthyofauna of first-order streams. Methods Data were collected within the Corumbataí River Basin, São Paulo, southeastern Brazil, during the dry season of 2012. We sampled the ichthyofauna in 13 stretches of streams distributed across four river sub-basins. The stretches differed in relation to the presence/absence of riparian forest, the predominant type of matrix and the percentage of forest. Response variables were species richness and the occurrence of functional groups and explanatory variables include both local and landscape structures from the surrounding environment. Local variables comprised the following water quality and structural attributes: pH, temperature, conductivity, turbidity, flow rate, depth, width, type of substrate. Landscape variables included presence/absence of riparian vegetation, type of vegetation, type of matrix, percentage of forest and canopy cover. Results A total of 268 individuals were recorded, which were distributed among 12 species. The landscape structure influenced the occurrence of functional groups in first-order streams, especially allochthonous-feeders, nektonic and hypoxia-intolerant species. The presence of riparian forest was the most important predictor. Species richness was negatively related to the presence of riparian vegetation, supporting the hypothesis that degraded landscapes lead to a reduction in diversity. Conclusion The protection of riparian vegetation is critical to the maintenance of ichthyofauna diversity in first-order streams. The presence or absence of riparian vegetation differently affected the occurrence of species depending on their functional characteristics, particularly those related to the tolerance to hypoxia, source of alimentary items and the position in the water column.


Sign in / Sign up

Export Citation Format

Share Document