An Error-Bound Theorem for Approximate Markov Chains

1992 ◽  
Vol 6 (3) ◽  
pp. 413-424 ◽  
Author(s):  
Nico M. Van Dijk

Recently an error-bound theorem was reported to conclude analytic error bounds for approximate Markov chains. The theorem required a uniform bound for marginal expectations of the approximate model. This note will relax this bound to steady state rather than marginal expectations as of practical interest(i) to simplify verification and/or(ii) to obtain a more accurate error bound.A communication model is studied in detail to support the results.

1988 ◽  
Vol 2 (4) ◽  
pp. 471-474 ◽  
Author(s):  
Nico M. van Dijk

Recently, Ross [1] proposed an elegant method of approximating transition probabilities and mean occupation times in continuous-time Markov chains based upon recursively inspecting the process at exponential times. The method turned out to be amazingly efficient for the examples investigated. However, no formal rough error bound was provided. Any error bound even though robust is of practical interest in engineering (e.g., for determining truncation criteria or setting up an experiment). This note primarily aims to show that by a simple and standard comparison relation a rough error bound of the method is secured. Also, some alternative approximations are inspected.


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


2019 ◽  
Vol 17 (1) ◽  
pp. 1599-1614
Author(s):  
Zhiwu Hou ◽  
Xia Jing ◽  
Lei Gao

Abstract A new error bound for the linear complementarity problem (LCP) of Σ-SDD matrices is given, which depends only on the entries of the involved matrices. Numerical examples are given to show that the new bound is better than that provided by García-Esnaola and Peña [Linear Algebra Appl., 2013, 438, 1339–1446] in some cases. Based on the obtained results, we also give an error bound for the LCP of SB-matrices. It is proved that the new bound is sharper than that provided by Dai et al. [Numer. Algor., 2012, 61, 121–139] under certain assumptions.


1994 ◽  
Vol 72 (9-10) ◽  
pp. 633-638
Author(s):  
M. T. Attaf ◽  
D. Allab

In a previous work, the authors presented a semianalytical treatment of the electromagnetic field distribution in the case of a straight conductor carrying a sinusoidal current parallel to a thin conducting plate. The result of this investigation is extended here to the evaluation of the repulsive forces accompanying this type of electromagnetic interaction. The variation of such forces with geometric parameters is studied in the presence of a single conductor, and in the case of several conductors laying in a plane parallel to the surface of the material submitted to the induction phenomenon. The problem of lévitation in steady-state conditions is examined, in the light of this arrangement, for various conducting materials. Graphs illustrate the results obtained and make evident their practical interest particularly in the stationary case of magnetically levitated vehicles.


2019 ◽  
Vol 874 ◽  
pp. 926-951 ◽  
Author(s):  
D. G. Schaeffer ◽  
T. Barker ◽  
D. Tsuji ◽  
P. Gremaud ◽  
M. Shearer ◽  
...  

Granular flows occur in a wide range of situations of practical interest to industry, in our natural environment and in our everyday lives. This paper focuses on granular flow in the so-called inertial regime, when the rheology is independent of the very large particle stiffness. Such flows have been modelled with the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology, which postulates that the bulk friction coefficient $\unicode[STIX]{x1D707}$ (i.e. the ratio of the shear stress to the pressure) and the solids volume fraction $\unicode[STIX]{x1D719}$ are functions of the inertial number $I$ only. Although the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology has been validated in steady state against both experiments and discrete particle simulations in several different geometries, it has recently been shown that this theory is mathematically ill-posed in time-dependent problems. As a direct result, computations using this rheology may blow up exponentially, with a growth rate that tends to infinity as the discretization length tends to zero, as explicitly demonstrated in this paper for the first time. Such catastrophic instability due to ill-posedness is a common issue when developing new mathematical models and implies that either some important physics is missing or the model has not been properly formulated. In this paper an alternative to the $\unicode[STIX]{x1D707}(I),\unicode[STIX]{x1D6F7}(I)$-rheology that does not suffer from such defects is proposed. In the framework of compressible $I$-dependent rheology (CIDR), new constitutive laws for the inertial regime are introduced; these match the well-established $\unicode[STIX]{x1D707}(I)$ and $\unicode[STIX]{x1D6F7}(I)$ relations in the steady-state limit and at the same time are well-posed for all deformations and all packing densities. Time-dependent numerical solutions of the resultant equations are performed to demonstrate that the new inertial CIDR model leads to numerical convergence towards physically realistic solutions that are supported by discrete element method simulations.


Sign in / Sign up

Export Citation Format

Share Document