The probability distribution of the extent of a random chain

Author(s):  
H. E. Daniels ◽  
F. Smithies

1. Introduction and summary. A chain of N links is allowed to assume a random configuration in space. The extent of the chain in any direction is defined as the shortest distance between a pair of planes perpendicular to that direction, such that the chain is contained entirely between them. In the present paper the probability distribution of the extent is discussed, starting with a chain in one dimension for which formulae are derived for the probability and mean extent for all values of N. The limiting forms for large N are then considered. The results are extended to the case of a chain in three dimensions, and it is shown that the extents in two directions at right angles tend to be independently distributed when N is large. It is assumed that the links are infinitely thin, so that a point in space may be occupied by the chain any number of times.

2020 ◽  
pp. 224-232
Author(s):  
Aleida Assmann

This concluding chapter poses the question of whether or not we have too much past and too little future. After all, the notion of the past has dramatically increased in its range of meanings, as has the future. The relation between the past, the present, and the future is a three-fold relationship in which one dimension cannot exist for long without the others. Ordering this three-fold temporal structure anew and bringing the three dimensions into a balanced relation, however, continues to be an open adventure. To be sure, it is also the greatest challenge posed by the demise of the modern time regime.


Author(s):  
Norman I. Badler ◽  
Cary B. Phillips ◽  
Bonnie Lynn Webber

This chapter describes the basic architecture of the Jack interactive system. The primary tools available to the Jack user involve direct manipulation of the displayed objects and figures on the screen. With articulated figures, movement of one part will naturally affect the position of other parts. Constraints are used to specify these relationships, and an inverse kinematics algorithm is used to achieve constraint satisfaction. As a consequence of user actions, certain global postural manipulations of the entire human figure are performed by the system. This chapter presents the direct spatial manipulations offered in Jack and shows how constraints are defined and maintained. One particular application of the body constraints is included: the generation of the reachable workspace of a chain of joints. 3D direct manipulation is a technique for controlling positions and orientations of geometric objects in a 3D environment in a non-numerical, visual way. It uses the visual structure as a handle on a geometric object. Direct manipulation techniques derive their input from pointing devices and provide a good correspondence between the movement of the physical device and the resulting movement of the object that the device controls. This is kinesthetic correspondence. Much research demonstrates the value of kinesthetically appropriate feedback [Bie87, BLP78, Sch83]. An example of this correspondence in a mouse-based translation operation is that if the user moves the mouse to the left, the object moves in such a way that its image on the screen moves to the left as well. The lack of kinesthetic feedback can make a manipulation system very difficult to use, akin to drawing while looking at your hand through a set of inverting mirrors. Providing this correspondence in two dimensions is fairly straightforward, but in three dimensions it is considerably more complicated. The advantage of the direct manipulation paradigm is that it is intuitive: it should always be clear to the user how to move the input device to cause the object to move in a desired direction. It focuses the user’s attention on the object, and gives the user the impression of manipulating the object itself.


1994 ◽  
Vol 75 (3) ◽  
pp. 1379-1390 ◽  
Author(s):  
Syed Akhtar ◽  
Doreen Tan

This study was designed to reassess and reconceptualize the multidimensional nature of organizational commitment. The Organizational Commitment Questionnaire of Porter, Steers, Mowday, and Boulian was administered to 259 employees representing five retail banks. Factor analysis (principal factor, promax rotation) yielded the three dimensions proposed by Porter, et al. in 1974. This conceptualization was inadequate because one dimension, i.e., desire to maintain organizational membership, overlaps the withdrawal construct. A similar criticism has been levelled against Meyer and Allen's 1991 model. Consistent with the three-dimensional attitude theory, organizational commitment was reconceptualized in terms of cognitive, emotive, and conative meanings. The proposed dimensions include normative commitment (amount of cognitive consonance with organizational norms), affective commitment (intensity of emotional attachment to the organization), and volitive commitment (extent of conative orientation towards organizational goals).


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Alexander Maloney ◽  
Edward Witten

Abstract Recent developments involving JT gravity in two dimensions indicate that under some conditions, a gravitational path integral is dual to an average over an ensemble of boundary theories, rather than to a specific boundary theory. For an example in one dimension more, one would like to compare a random ensemble of two-dimensional CFT’s to Einstein gravity in three dimensions. But this is difficult. For a simpler problem, here we average over Narain’s family of two-dimensional CFT’s obtained by toroidal compactification. These theories are believed to be the most general ones with their central charges and abelian current algebra symmetries, so averaging over them means picking a random CFT with those properties. The average can be computed using the Siegel-Weil formula of number theory and has some properties suggestive of a bulk dual theory that would be an exotic theory of gravity in three dimensions. The bulk dual theory would be more like U(1)2D Chern-Simons theory than like Einstein gravity.


1974 ◽  
Vol 29 (1-2) ◽  
pp. 10-12 ◽  
Author(s):  
Horst Sabrowsky ◽  
Welf Bronger ◽  
Dieter Schmitz

The ternary oxide K2PdO2 has been prepared by a reaction between K2O and PdO. X-ray investigations suggest a chain-structure-type which corresponds to that of K2PtS2. The planar oxygen coordinations of the palladium atoms are connected laterally in one dimension. The orthorhombic unit cell (a = 8.523, b = 6.089, c = 3.119 Å) contains two formula units.


Lubricants ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 35
Author(s):  
Martin H. Müser ◽  
Han Li ◽  
Roland Bennewitz

A computationally lean model for the coarse-grained description of contact mechanics of hydrogels is proposed and characterized. It consists of a simple bead-spring model for the interaction within a chain, potentials describing the interaction between monomers and mold or confining walls, and a coarse-grained potential reflecting the solvent-mediated effective repulsion between non-bonded monomers. Moreover, crosslinking only takes place after the polymers have equilibrated in their mold. As such, the model is able to reflect the density, solvent quality, and the mold hydrophobicity that existed during the crosslinking of the polymers. Finally, such produced hydrogels are exposed to sinusoidal indenters. The simulations reveal a wavevector-dependent effective modulus E * ( q ) with the following properties: (i) stiffening under mechanical pressure, and a sensitivity of E * ( q ) on (ii) the degree of crosslinking at large wavelengths, (iii) the solvent quality, and (iv) the hydrophobicity of the mold in which the polymers were crosslinked. Finally, the simulations provide evidence that the elastic heterogeneity inherent to hydrogels can suffice to pin a compressed hydrogel to a microscopically frictionless wall that is undulated at a mesoscopic length scale. Although the model and simulations of this feasibility study are only two-dimensional, its generalization to three dimensions can be achieved in a straightforward fashion.


2015 ◽  
Vol 10 (3) ◽  
pp. 183-186 ◽  
Author(s):  
Shixiu Cao ◽  
Tianmo Liu ◽  
Wen Zeng ◽  
Shahid Hussain ◽  
Xianghe Peng

In classical mechanics (c.m.), and near the semi-classical limit h →0 of quantum mechanics (s.c.l.), the enhancement factors α ≡ ρ 0 /ρ ∞ are found for scattering by attractive central potentials U(r) ; here ρ 0,∞ (and v 0,∞ ) are the particle densities (and speeds) at the origin and far upstream in the incident beam. For finite potentials ( U (0) > — ∞), and when there are no turning points, the preceding paper found both in c.m., and near the s.c.l. (which then covers high v ∞ ), α 1 = v ∞ / v 0 , α 2 = 1, α 3 = v 0 / v ∞ respectively in one dimension (1D), 2D and 3D. The argument is now extended to potentials (still without turning points), where U ( r →0) ~ ─ C/r q , with 0 < q < 1 in ID (where r ≡ | x | ), and 0 < q < 2 in 2D and 3D, since only for such q can classical trajectories and quantum wavefunctions be defined unambiguously. In c.m., α 1 (c.m.) = 0, α 3 (c.m.) = ∞, and α 2 (c.m.) = (1 —½ q ) N , where N = [integer part of (1 ─½ q ) -1 ]is the number of trajectories through any point ( r , θ) in the limit r → 0. All features of U(r) other than q are irrelevant. Near the s.c.l. (which now covers low v ∞ ) a somewhat delicate analysis is needed, matching exact zero-energy solutions at small r to the ordinary W.K.B. approximation at large r ; for small v ∞ / u it yields the leading terms α 1 (s.c.l.) = Λ 1 (q) v ∞ / u , α 2 (s.c.I) = (1 ─½ q ) -1 , α 3 (s.c.l.)= Λ 3 ( q ) u/v ∞ , where u ≡ (C/h q m 1-q ) 1/(2-q) is a generalized Bohr velocity. Here Λ 1,3 are functions of q alone, given in the text; as q →0 the α (s.c.l.) agree with the α quoted above for finite potentials. Even in the limit h = 0, α 2 (s.c.l.) and α 2 (c.m.) differ. This paradox in 2D is interpreted loosely in terms of quantal interference between the amplitudes corresponding to the N classical trajectories. The Coulomb potential ─ C/r is used as an analytically soluble example in 2D as well as in 3D. Finally, if U(r) away from the origin depends on some intrinsic range parameter α(e.g. U = ─ C exp (─r/a)/r q ) , and if, near the s.c.l., v ∞ / u is regarded as a function not of h but more realistically of v ∞ , then the expressions α (s.c.l.) above apply only in an intermediate range 1/ a ≪ mv ∞ / h ≪ ( mC/h 2 ) 1/(2- q ) which exists only if a ≫ ( h 2 / mC ) 1/(2- q ) ).


Sign in / Sign up

Export Citation Format

Share Document