scholarly journals A numerical solution to the flow between eccentric rotating cylinders with a slotted sleeve

Author(s):  
L. D. Hird ◽  
P. F. Siew ◽  
S. Wang

AbstractThe flow between two eccentric rotating cylinders with a slotted sleeve placed around the inner cylinder is determined numerically using an exponentially fitted finite-volume method. The flow field is determined for various Reynolds numbers, eccentricities and rotational speeds for the cases when the cylinders rotate in the same sense and rotate in opposite senses. The flow field developed when both cylinders rotate in the same sense is characterised, for sufficiently large eccentricity and rotational rate, by two counter-rotating eddies. Only one eddy is observed when the cylinders rotate in opposite senses. The presence of these eddies restricts the flow through the slotted sleeve in the former case but encourages through flow in the latter. For both cases, the eccentricity affects the location of the eddies, while changing the relative rotational rate only affects the eddy location for the case when the cylinders rotate in opposite directions. The change in Reynolds number has little effect on the flow field for the problems considered here. The vorticity generated by the slotted sleeve is convected into the main body of the flow field. No inviscid core within the main body of the flow field is observed for the range of Reynolds number considered.

2012 ◽  
Vol 134 (11) ◽  
Author(s):  
A. B. Maynard ◽  
J. S. Marshall

The force acting on a spherical particle fixed to a wall and immersed in an axisymmetric straining flow is examined for small Reynolds numbers. The steady, incompressible flow field is computed using an axisymmetric finite-volume method over conditions spanning five decades in the Reynolds number. The flow is characterized by the formation of a vortex ring structure in the wedge region formed between the particle lower surface and the plane wall. A power law expression for the dimensionless particle force is obtained as a function of the Reynolds number, which is found to hold with excellent accuracy for Reynolds numbers below about 0.1.


Author(s):  
L. D. Hird ◽  
P. F. Siew

AbstractTwo eccentric rotating cylinders together with a permeable membrane surrounding the inner cylinder are used to model the flow around a modified viscometer. A perturbation method is used to solve for the flow between the membrane and the outer cylinder; the flow between the inner rotor and the membrane is assumed to be governed by Stoke's equation, and the two flow regimes are coupled by the through-flow across the membrane. For moderate values of Reynolds number and eccentricity, the permeability of the membrane plays a negligible role, and the flow through the membrane is found to be eccentricity dependent. High eccentricities result in the formation of eddies which, upon increasing the Reynolds number, move in a direction opposite to that of the rotation of the outer bowl.


Author(s):  
Angela O. Nieckele ◽  
Luis Fernando Figueira da Silva ◽  
Joa˜o Carlos R. Pla´cido

Thermal spallation is a possible drilling technique which consists of using hot supersonic jets as heat source to perforate hard rocks at high rates. This work presents a numerical analysis of a typical spallation drilling configuration, by the finite volume method. The time-averaged conservation equations of mass, momentum and energy are solved to determine the turbulent compressible gas phase flow field. Turbulence is predicted by the classical high Reynolds number κ-ε model, as well as with a low Reynolds number κ-ε model. The influence of the jet Reynolds number is investigated. Special attention is given to the rock surface temperature, since its accurate determination is required to predict spallation rates under field-drilling conditions.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Author(s):  
Majid Nabavi ◽  
Luc Mongeau

In this study, two-dimensional laminar incompressible and turbulent compressible flow through the planar diffuser (gradual expansion) for different divergence half angles of the diffuser (θ), and different Reynolds numbers (Re) was numerically studied. The effects of θ on the critical Reynolds number at which the onset of asymmetric flow is observed, were investigated. In the laminar flow regime, it was observed that for every values of θ, there is a critical Re beyond which the flow is asymmetric. However, in the turbulent flow regime, for θ ≥ 20°, even at low Reynolds number the flow is asymmetric. Only for θ ≤ 10°, symmetric flow was observed below a critical Re.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit Banerjee ◽  
Saurav K. Ghosh ◽  
Debopam Das

Flow field of a butterfly mimicking flapping model with plan form of various shapes and butterfly-shaped wings is studied. The nature of the unsteady flow and embedded vortical structures are obtained at chord cross-sectional plane of the scaled wings to understand the dynamics of insect flapping flight. Flow visualization and PIV experiments are carried out for the better understanding of the flow field. The model being studied has a single degree of freedom of flapping. The wing flexibility adds another degree to a certain extent introducing feathering effect in the kinematics. The mechanisms that produce high lift and considerable thrust during the flapping motion are identified. The effect of the Reynolds number on the flapping flight is studied by varying the wing size and the flapping frequency. Force measurements are carried out to study the variations of lift forces in the Reynolds number (Re) range of 3000 to 7000. Force experiments are conducted both at zero and finite forward velocity in a wind tunnel. Flow visualization as well as PIV measurement is conducted only at zero forward velocity in a stagnant water tank and in air, respectively. The aim here is to measure the aerodynamic lift force and visualize the flow field and notice the difference with different Reynolds number (Re), and flapping frequency (f), and advance ratios (J=U∞/2ϕfR).


1965 ◽  
Vol 87 (2) ◽  
pp. 525-529 ◽  
Author(s):  
S. Soundranayagam

The flow through two ISA nozzles of area ratio zero and 0.4 was investigated to determine the nature of the flow and its variation with Reynolds number. Separation occurs within the nozzle of zero area ratio, the size of the bubble increasing with decreasing Reynolds number. The predicted discharge coefficient based on a simplified flow model agrees with experiment for large Reynolds numbers. Upstream influences affect the performance of the nozzle of area ratio 0.4. The flows through the two nozzles are not comparable, and potential-flow results cannot be used to explain flow in venturis and nozzles in pipes. The discharge-coefficient curve for area ratio 0.4 shows a distinct hump when based on the head differential measured as for venturis, but no hump when based on the head differential across the corner taps.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Allan I. J. Love ◽  
Donald Giddings ◽  
Henry Power

The turbulent flow through a 3D diffuser featuring a double expansion is investigated using computational fluid dynamics. Time dependent simulations are reported using the stress omega Reynolds stress model available in ANSYS FLUENT 13.0. The flow topography and characteristics over a range of Reynolds numbers from 42,000 to 170,000 is reported, and its features are consistent with those investigated for other similar geometries. A transition from a chaotic separated flow to one featuring one large recirculation in one corner of the diffuser is predicted at a Reynolds number of 80,000. For a Reynolds number of 170,000 a precessing/flapping motion of the main flow field was identified, the frequency of which is consistent with other numerical and experimental studies.


2015 ◽  
Vol 813-814 ◽  
pp. 736-741
Author(s):  
M. Muthukannan ◽  
P. Rajesh Kanna ◽  
S. Jeyakumar ◽  
J.Y. Raja Shangaravel ◽  
S. Raghu ◽  
...  

In the present numerical investigation, the flow field of confined slot air jet in a rectangular computational domain is reported. In the present work the flow field parameters like reattachment length, vortex center and horizontal velocity profiles for various Reynolds numbers and for various aspect ratios are presented .The present study reveals that the vortex centers are moving in a downstream direction with increase in Reynolds number. The reattachment length is directly dependent on the Reynolds numbers. In case of vortex dynamics, the vortex size is indirectly dependent on the inlet jet width. In the present investigation, SIMPLE algorithm is used to solve the governing equations. It is concluded that the aspect ratio and the Reynolds number are playing dominant roles in flow field of the present computational domain.


1999 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow in microchannels etched in silicon with hydraulic diameters of 9.7, 19.6, and 46.6 μm, and Reynolds numbers ranging from 0. 2 to 1000. The objectives of this research are (1) to measure the pressure distribution along the length of a microchannel; and (2) to determine the friction factor within the fully developed region of the microchannel. The pressure distribution is presented as absolute local pressure plotted against the distance from the microchannel inlet. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number with the outlet Knudsen number, Kn, as a curve parameter. The following conclusions have been reached in the present investigation: (1) Pressure losses at the microchannel entrance can be significant; (2) the product, f*Re, when measured sufficiently far away from the entrance and exit is a constant in the laminar flow region; and (3) the friction factor decreases as the Knudsen number increases.


Sign in / Sign up

Export Citation Format

Share Document