Numerical Investigation on Visualizations of Confined Air Flow in a Slot Jet Inside a Rectangular Channel

2015 ◽  
Vol 813-814 ◽  
pp. 736-741
Author(s):  
M. Muthukannan ◽  
P. Rajesh Kanna ◽  
S. Jeyakumar ◽  
J.Y. Raja Shangaravel ◽  
S. Raghu ◽  
...  

In the present numerical investigation, the flow field of confined slot air jet in a rectangular computational domain is reported. In the present work the flow field parameters like reattachment length, vortex center and horizontal velocity profiles for various Reynolds numbers and for various aspect ratios are presented .The present study reveals that the vortex centers are moving in a downstream direction with increase in Reynolds number. The reattachment length is directly dependent on the Reynolds numbers. In case of vortex dynamics, the vortex size is indirectly dependent on the inlet jet width. In the present investigation, SIMPLE algorithm is used to solve the governing equations. It is concluded that the aspect ratio and the Reynolds number are playing dominant roles in flow field of the present computational domain.

Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Author(s):  
Alireza Dastan ◽  
Omid Abouali

In this paper pressure drop and particle deposition in a microchannel with a hydraulic diameter of 225 micrometer is investigated numerically. Several hundred micron length fibers caught at the entrance of the channels making a “fiber web” also is modeled in this research. Governing equations for the flow field are solved with an Eulerian approach while the equations of particle motion in the flow are solved by a Lagrangian approach. Assuming the symmetry in the domain, one channel and the corresponding plenum are studied in the computational domain. For studying the effects of fibers in the flow, two fiber webs with four and six solid fibers are studied. The increase of pressure drop in the microchannel because of the entrance fiber web is computed and discussed. Also deposition and collection of the particles with various diameters at the fiber webs are also presented.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


2003 ◽  
Vol 27 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Edmond Ismaili ◽  
Yasunari Kamada ◽  
Takao Maeda

Wind tunnel results are reported concerning the effects of blade aspect ratio and Reynolds number on the performance of a horizontal axis wind turbine (HAWT) with Mie-type1 tip attachments. The flow behaviour around the blade tips and the Mie-type tip vanes is presented. Detailed surface oil film visualization and velocity measurements around the blade tips, with and without Mie vanes, were obtained with the two-dimensional, Laser-Doppler Velocimetry method. Experiments were performed with rotors having blades with different aspect ratio and operating at different Reynolds numbers. The properties of the vortices generated by the Mie vanes and the blade tips were carefully studied. It was found that increased power augmentation by Mie vanes is achieved with blades having smaller aspect ratio and smaller Reynolds number.


Author(s):  
Patricia Streufert ◽  
Terry X. Yan ◽  
Mahdi G. Baygloo

Local turbulent convective heat transfer from a flat plate to a circular impinging air jet is numerically investigated. The jet-to-plate distance (L/D) effect on local heat transfer is the main focus of this study. The eddy viscosity V2F turbulence model is used with a nonuniform structured mesh. Reynolds-Averaged Navier-Stokes equations (RANS) and the energy equation are solved for axisymmetric, three-dimensional flow. The numerical solutions obtained are compared with published experimental data. Four jet-to-plate distances, (L/D = 2, 4, 6 and 10) and seven Reynolds numbers (Re = 7,000, 15,000, 23,000, 50,000, 70,000, 100,000 and 120,000) were parametrically studied. Local and average heat transfer results are analyzed and correlated with Reynolds number and the jet-to-plate distance. Results show that the numerical solutions matched experimental data best at low jet-to-plate distances and lower Reynolds numbers, decreasing in ability to accurately predict the heat transfer as jet-to-plate distance and Reynolds number was increased.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Author(s):  
Yukimaru Shimizu ◽  
Edmond Ismaili ◽  
Yasunari Kamada ◽  
Takao Maeda

The results of an extensive experimental research work related to the performance of a HAWT with a tip-mounted Mie type vane are presented in this paper. From performance experiments carried out on four sets of blades with varying aspect ratios and for different Reynolds number, it was found that the application of a tip-mounted Mie vane resulted in a larger increase in maximum power coefficient for rotors with smaller aspect ratio and for lower Reynolds number. To investigate further the phenomenon and to explain the relationships found between power increase due to a Mie vane and blade aspect ratios and Reynolds number, detailed flow visualization around blade tip and the Mie vane were performed. It was found that the tendency of the power increase due to a Mie vane was dependent on the size of a corner vortex between blade tip and the downstream extension of the Mie vane.


2016 ◽  
Vol 808 ◽  
pp. 511-538 ◽  
Author(s):  
Matteo de Giovanetti ◽  
Yongyun Hwang ◽  
Haecheon Choi

Despite a growing body of recent evidence on the hierarchical organization of the self-similar energy-containing motions in the form of Townsend’s attached eddies in wall-bounded turbulent flows, their role in turbulent skin-friction generation is currently not well understood. In this paper, the contribution of each of these self-similar energy-containing motions to turbulent skin friction is explored up to $Re_{\unicode[STIX]{x1D70F}}\simeq 4000$. Three different approaches are employed to quantify the skin-friction generation by the motions, the spanwise length scale of which is smaller than a given cutoff wavelength: (i) FIK (Fukagata, Iwamoto, Kasagi) identity in combination with the spanwise wavenumber spectra of the Reynolds shear stress; (ii) confinement of the spanwise computational domain; (iii) artificial damping of the motions to be examined. The near-wall motions are found to continuously reduce their role in skin-friction generation on increasing the Reynolds number, consistent with the previous finding at low Reynolds numbers. The largest structures given in the form of very-large-scale and large-scale motions are also found to be of limited importance: due to a non-trivial scale interaction process, their complete removal yields only a 5–8 % skin-friction reduction at all of the Reynolds numbers considered, although they are found to be responsible for 20–30 % of total skin friction at $Re_{\unicode[STIX]{x1D70F}}\simeq 2000$. Application of all the three approaches consistently reveals that the largest amount of skin friction is generated by the self-similar motions populating the logarithmic region. It is further shown that the contribution of these motions to turbulent skin friction gradually increases with the Reynolds number, and that these coherent structures are eventually responsible for most of turbulent skin-friction generation at sufficiently high Reynolds numbers.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit Banerjee ◽  
Saurav K. Ghosh ◽  
Debopam Das

Flow field of a butterfly mimicking flapping model with plan form of various shapes and butterfly-shaped wings is studied. The nature of the unsteady flow and embedded vortical structures are obtained at chord cross-sectional plane of the scaled wings to understand the dynamics of insect flapping flight. Flow visualization and PIV experiments are carried out for the better understanding of the flow field. The model being studied has a single degree of freedom of flapping. The wing flexibility adds another degree to a certain extent introducing feathering effect in the kinematics. The mechanisms that produce high lift and considerable thrust during the flapping motion are identified. The effect of the Reynolds number on the flapping flight is studied by varying the wing size and the flapping frequency. Force measurements are carried out to study the variations of lift forces in the Reynolds number (Re) range of 3000 to 7000. Force experiments are conducted both at zero and finite forward velocity in a wind tunnel. Flow visualization as well as PIV measurement is conducted only at zero forward velocity in a stagnant water tank and in air, respectively. The aim here is to measure the aerodynamic lift force and visualize the flow field and notice the difference with different Reynolds number (Re), and flapping frequency (f), and advance ratios (J=U∞/2ϕfR).


Sign in / Sign up

Export Citation Format

Share Document